Publications by authors named "Daohui Ge"

Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance.

View Article and Find Full Text PDF

Cell type annotation refers to the process of categorizing and labeling cells to identify their specific cell types, which is crucial for understanding cell functions and biological processes. Although many methods have been developed for automated cell type annotation, they often encounter challenges such as batch effects due to variations in data distribution across platforms and species, thereby compromising their performance. To address batch effects, in this study, a pre-trained domain adaptation model based on structural similarity, named pscAdapt, is proposed for cell type annotation.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with regulatory roles in disease pathogenesis. Computational models aimed at predicting circRNA-disease associations offer valuable insights into disease mechanisms, thereby enabling the development of innovative diagnostic and therapeutic approaches while reducing the reliance on costly wet experiments. In this study, SGFCCDA is proposed for predicting potential circRNA-disease associations based on scale graph convolutional networks and feature convolution.

View Article and Find Full Text PDF

Recently developed single-cell RNA-seq (scRNA-seq) technology has given researchers the chance to investigate single-cell level of disease development. Clustering is one of the most essential strategies for analyzing scRNA-seq data. Choosing high-quality feature sets can significantly enhance the outcomes of single-cell clustering and classification.

View Article and Find Full Text PDF

Background: Piwi-interacting RNAs (piRNAs) have been proven to be closely associated with human diseases. The identification of the potential associations between piRNA and disease is of great significance for complex diseases. Traditional "wet experiment" is time-consuming and high-priced, predicting the piRNA-disease associations by computational methods is of great significance.

View Article and Find Full Text PDF