The metabotropic glutamate (mGlu) receptor 5 is a G protein-coupled receptor and is densely expressed in the mammalian brain. Like other glutamate receptors, mGlu5 receptors are tightly regulated by posttranslational modifications such as phosphorylation, although underlying mechanisms are incompletely investigated. In this study, we investigated the role of a prime kinase, extracellular signal-regulated kinase 1 (ERK1), in the phosphorylation and regulation of mGlu5 receptors in vitro and in striatal neurons.
View Article and Find Full Text PDFThe psychostimulant amphetamine (AMPH) has an impact on a variety of cellular activities in striatal neurons, although underlying signaling mechanisms are incompletely understood. The Src family kinase (SFK) is among key signaling molecules enriched in striatal neurons and is involved in the regulation of a set of discrete downstream targets. Given the likelihood that AMPH may regulate SFKs, we investigated and characterized the effect of AMPH on SFK phosphorylation and enzymatic activity in rat striatal neurons in vivo.
View Article and Find Full Text PDFThe mitogen-activated protein kinase (MAPK), especially its extracellular signal-regulated kinase (ERK) subfamily, is a group of kinases enriched in the mammalian brain. While ERK is central to cell signaling and neural activities, the regulation of ERK by transmitters is poorly understood. In this study, the role of acetylcholine in the regulation of ERK was investigated in adult rat striatum in vivo.
View Article and Find Full Text PDFThe acetylcholine muscarinic 4 (M4) receptor is a principal muscarinic receptor subtype present in the striatum. Notably, G-coupled M4 receptors and G/G-coupled dopamine D1 receptors are coexpressed in striatonigral projection neurons and are thought to interact with each other to regulate neuronal excitability, although underlying molecular mechanisms are poorly understood. In this study, we investigated the role of M4 receptors in the regulation of phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the rat normal and dopamine-stimulated striatum in vivo.
View Article and Find Full Text PDFTwo key transmitters in the medial prefrontal cortex (mPFC), dopamine and acetylcholine, are believed to interact with each other to modulate local glutamatergic transmission, although molecular mechanisms underlying their crosstalk are poorly understood. Here we investigated effects of pharmacological manipulations of dopamine and muscarinic receptors on phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult rat mPFC in vivo. We found that an agonist selective for G-coupled dopamine D receptors, SKF81297, increased AMPA receptor GluA1 subunit phosphorylation at a protein kinase A-sensitive site (S845), while SKF81297 had no effect on GluA1 phosphorylation at S831.
View Article and Find Full Text PDFFyn is a member of the Src family of nonreceptor tyrosine kinases and is broadly expressed in the CNS. As a synapse-enriched kinase, Fyn interacts with and phosphorylates local substrates to regulate synaptic transmission and plasticity, although our knowledge of specific targets of Fyn at synaptic sites remains incomplete and the accurate role of Fyn in regulating synaptic proteins is poorly understood. In this study, we initiated an effort to explore the interaction of Fyn with a metabotropic glutamate receptor (mGluR).
View Article and Find Full Text PDFDopamine (DA) and acetylcholine (ACh) signals converge onto protein kinase A (PKA) in medium spiny neurons of the striatum to control cellular and synaptic activities of these neurons, although underlying molecular mechanisms are less clear. Here we measured phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) at a PKA site (S845) as an indicator of AMPAR responses in adult rat brains in vivo to explore how DA and ACh interact to modulate AMPARs. We found that subtype-selective activation of DA D1 receptors (D1Rs), D2 receptors (D2Rs), or muscarinic M4 receptors (M4Rs) induced specific patterns of GluA1 S845 responses in the striatum.
View Article and Find Full Text PDFPsychostimulants have an impact on protein synthesis, although underlying molecular mechanisms are unclear. Eukaryotic initiation factor 2α-subunit (eIF2α) is a key player in initiation of protein translation and is regulated by phosphorylation. While this factor is sensitive to changing synaptic input and is critical for synaptic plasticity, its sensitivity to stimulants is poorly understood.
View Article and Find Full Text PDFMetabotropic and ionotropic glutamate receptors are closely clustered in postsynaptic membranes and are believed to interact actively with each other to control excitatory synaptic transmission. Metabotropic glutamate receptor 5 (mGluR5), for example, has been well documented to potentiate ionotropic NMDA receptor activity, although underlying mechanisms are poorly understood. In this study, we investigated the role of mGluR5 in regulating trafficking and subcellular distribution of NMDA receptors in adult rat striatal neurons.
View Article and Find Full Text PDFDopamine and acetylcholine are two principal transmitters in the striatum and are usually balanced to modulate local neural activity and to maintain striatal homeostasis. This study investigates the role of dopamine and muscarinic acetylcholine receptors in the regulation of a central signaling protein, i.e.
View Article and Find Full Text PDFIncreasing evidence supports the critical role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in psychostimulant action. These receptors are regulated via a phosphorylation-dependent mechanism in their trafficking, distribution, and function. The hippocampus is a brain structure important for learning and memory and is emerging as a critical site for processing psychostimulant effects.
View Article and Find Full Text PDFCa²⁺/calmodulin-dependent protein kinase II (CaMKII) is the most abundant kinase within excitatory synapses in the mammalian brain. It interacts with and phosphorylates a large number of synaptic proteins, including major ionotropic glutamate receptors (iGluRs) and group I metabotropic glutamate receptors (mGluRs), to constitutively and/or activity-dependently regulate trafficking, subsynaptic localization, and function of the receptors. Among iGluRs, the N-methyl-D-aspartate receptor (NMDAR) is a direct target of CaMKII.
View Article and Find Full Text PDFProtein phosphorylation is an important mechanism for regulating ionotropic glutamate receptors (iGluRs). Early studies have established that major iGluR subtypes, including α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and N-methyl-d-aspartate (NMDA) receptors, are subject to phosphorylation. Multiple serine, threonine, and tyrosine residues predominantly within the C-terminal regions of AMPA receptor and NMDA receptor subunits have been identified as sensitive phosphorylation sites.
View Article and Find Full Text PDFThe α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is a major ionotropic glutamate receptor subtype in the mammalian brain. Like other glutamate receptors, the AMPA receptor is regulated by phosphorylation. By phosphorylating specific serine resides in AMPA receptor subunits (GluA1 and GluA2), various protein kinases regulate subcellular/subsynaptic expression and function of the receptor.
View Article and Find Full Text PDFTwo glutamate receptors, metabotropic glutamate receptor 5 (mGluR5), and ionotropic NMDA receptors (NMDAR), functionally interact with each other to regulate excitatory synaptic transmission in the mammalian brain. In exploring molecular mechanisms underlying their interactions, we found that Ca(2+) /calmodulin-dependent protein kinase IIα (CaMKIIα) may play a central role. The synapse-enriched CaMKIIα directly binds to the proximal region of intracellular C terminal tails of mGluR5 in vitro.
View Article and Find Full Text PDFNogo receptors (NgRs) are a family of cell surface receptors that are broadly expressed in the mammalian brain. These receptors could serve as an inhibitory element in the regulation of activity-dependent axonal growth and spine and synaptic formation in the adult animal brain. Thus, through balancing the structural response to changing cellular and synaptic inputs, NgRs participate in constructing activity-dependent morphological plasticity.
View Article and Find Full Text PDFThe metabotropic glutamate receptor 1 (mGluR1) is a Gα(q)-protein-coupled receptor and is distributed in broad regions of the mammalian brain. As a key element in excitatory synaptic transmission, the receptor regulates a wide range of cellular and synaptic activities. In addition to regulating its targets, the receptor itself is believed to be actively regulated by intracellular signals, although underlying mechanisms are essentially unknown.
View Article and Find Full Text PDFThe neuronal PAS domain protein 4 (Npas4) is a transcription factor that is almost exclusively expressed in the mammalian brain. As an activity-dependent transcription factor, Npas4 regulates the transcription of discrete genes and transcriptionally controls the experience-dependent learning and memory. In this study, we explored the impact of the psychostimulant amphetamine (AMPH) on Npas4 protein expression in the rat striatum.
View Article and Find Full Text PDFIonotropic glutamate receptors (iGluR) are ligand-gated ion channels and are densely expressed in broad areas of mammalian brains. Like iGluRs, acid-sensing ion channels (ASIC) are ligand (H(+))-gated channels and are enriched in brain cells and peripheral sensory neurons. Both ion channels are enriched at excitatory synaptic sites, functionally coupled to each other, and subject to the modulation by a variety of signaling molecules.
View Article and Find Full Text PDFPostsynaptic density 93 (PSD-93) is a protein enriched at postsynaptic sites. As a key scaffolding protein, PSD-93 forms complexes with the clustering of various synaptic proteins to construct postsynaptic signaling networks and control synaptic transmission. Extracellular signal-regulated kinase (ERK) is a prototypic member of a serine/threonine protein kinase family known as mitogen-activated protein kinase (MAPK).
View Article and Find Full Text PDFNewly synthesized protein kinase C (PKC) undergoes a series of phosphorylation to render a mature form of the enzyme. It is this mature PKC that possesses the catalytic competence to respond to second messengers for activation and downstream signaling. The first and rate-limiting phosphorylation occurs at a threonine residue in the activation loop (AL), which triggers the rest maturation processing of PKC and regulates PKC activity in response to cellular stimulation.
View Article and Find Full Text PDFThis article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.
View Article and Find Full Text PDFMethyl CpG-binding protein-2 (MeCP2) is a transcriptional regulator that binds to methylated DNA at CpG sites and functions to silence DNA transcription. MeCP2 is subject to the phosphorylation modification at serine 421 (S421), which releases MeCP2 from DNA and thus facilitates gene expression. As a transcriptional repressor densely expressed in limbic reward circuits of adult mammalian brains, MeCP2 is recently emerging as a critical epigenetic factor in experience-dependent neural plasticity and psychostimulant addiction.
View Article and Find Full Text PDFPost-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues.
View Article and Find Full Text PDFIn the present studies, the effect of paeoniflorin (PF), one of the main compounds extracted from Paeoniae radix, in alleviating the neurological impairment following unilateral striatal 6-hydroxydopamine (6-OHDA) lesion was examined in Sprague-Dawley rats. Sub-chronic PF (2.5, 5 and 10 mg/kg, s.
View Article and Find Full Text PDF