Background: Maternal diabetes increases the risk for neural tube defects (NTDs). It is unclear if miRNAs, senescence, and DNA damage are involved in this process. In this study, we used neural stem cells as an in vitro proxy of embryonic neuroepithelium to investigate whether high glucose triggers neural stem cell senescence and DNA damage by upregulating miR-200c, which may be responsible for NTDs.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is a new respiratory illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and now spreads globally. Currently, therapeutics and effective treatment options remain scarce and there is no proven drug to treat COVID-19. Targeting the positive-sense RNA genome and viral mRNAs of SARS-CoV-2 to simultaneously degrade viral genome templates for replication and viral mRNAs for essential gene expression would be a strategy to completely realize virus elimination.
View Article and Find Full Text PDFSox2 overlapping transcript (Sox2ot) is a long non-coding RNA (lncRNA), which harbors one of the major regulators of pluripotency, the Sox2 gene, in its intronic region. Sox2ot is primarily expressed in the developing neuroepithelium. However, its role in neural tube closure and embryonic development remains unclear.
View Article and Find Full Text PDFSRY-box transcription factor 2 (SOX2) overlapping transcript (SOX2-OT) is an evolutionarily conserved long noncoding RNA. Its intronic region contains the SOX2 gene, the major regulator of the pluripotency of embryonic stem cells. The human SOX2-OT gene comprises multiple exons and has multiple transcription start sites and generates hundreds of transcripts.
View Article and Find Full Text PDF