Publications by authors named "Dao Guan"

This study investigated the degradation of clofibric acid (CFA), bezafibrate (BZF), and sulfamethoxazole (SMX) in synthetic human urine using a novel mesoporous iron powder-activated persulfate system (mFe-PS system), and identified the factors limiting their degradation in synthetic human urine. A kinetic model was established to expose the radical production in various reaction conditions, and experiments were conducted to verify the modeling results. In the phosphate-containing mFe-PS system, the 120 min removal efficiency of CFA decreased from 95.

View Article and Find Full Text PDF

Recently, anaerobic self-forming dynamic membrane bioreactors (AnSFDMBRs) have attracted increasing attention, and are considered as an alternative to conventional anaerobic membrane bioreactors (AnMBRs). The key advantages of AnSFDMBRs include high flux, low propensity towards fouling, and low capital and operational costs. Although there have been several reviews on AnMBRs, very few reviews on AnSFDMBR system.

View Article and Find Full Text PDF

The self-forming dynamic membrane bioreactor (SFDMBR) is a biological wastewater treatment technology based on the conventional membrane bioreactor (MBR) with membrane material modification to a large pore size (30-100 μm). This modification requires a dynamic layer formed by activated sludge to provide effective filtration function for high-quality permeate production. The properties of the dynamic layer are therefore important for permeate quality in SFDMBRs.

View Article and Find Full Text PDF

The fuel moisture content dynamics of mixed forest of Populus davidiana-Betula platyphylla, Larix gmelinii, Pinus sylvestris var. mongolica, mixed forest of L. gmelinii-B.

View Article and Find Full Text PDF

Conventional membrane bioreactor (MBR) systems have increasingly been studied in recent decades. However, their applications have been limited due to their drawbacks such as low flux, membrane fouling, and high operating cost. In this study, a compact macro-filtration MBR (MfMBR) process was developed by using a large pore size membrane to mitigate the membrane fouling problem.

View Article and Find Full Text PDF