Publications by authors named "Dao Fu Dai"

Article Synopsis
  • - The optimization of electron microscopy (EM) tissue processing protocols is urgent due to the rising number of renal biopsies needing EM for accurate diagnoses, with traditional methods taking 48-52 hours compared to a faster 8-hour microwave-based method.
  • - Concerns exist about the quality of the fast-processing EM (FEM) potentially affecting diagnoses; however, this study provides evidence that FEM produces comparably high-resolution images to the conventional EM (CEM).
  • - Both prospective and retrospective analyses showed no significant differences between FEM and CEM in terms of image quality and structural features of kidney tissues, indicating that FEM can be a reliable alternative for quicker diagnoses.
View Article and Find Full Text PDF

Abdominal and thoracic aortic aneurysms (AAAs, TAAs) remain a major cause of deaths worldwide, in part due to the lack of reliable prognostic markers or early warning signs. Sox6 has been found to regulate renin controlling blood pressure. We hypothesized that Sox6 may serve as an important regulator of the mechanisms contributing to hypertension-induced aortic aneurysms.

View Article and Find Full Text PDF

Aging leads to a progressive decline in cardiac function, increasing the risk of heart failure with preserved ejection fraction (HFpEF). This study elucidates the impact of α-Klotho, an anti-aging hormone, on cardiac diastolic dysfunction and explore its downstream mechanisms. Aged wild-type and heterozygous Klotho-deficient mice received daily injection of soluble α-Klotho (sKL) for 10 weeks, followed by a comprehensive assessment of heart function by echocardiography, intracardiac pressure catheter, exercise tolerance, and cardiac pathology.

View Article and Find Full Text PDF

Introduction: Hypervolemia is a prevalent comorbidity of chronic kidney disease (CKD) patients. Thiazide diuretics (THZ) are the most common treatment for volume overload and hypertension (HTN). This study examines the association between THZ usage and clinical outcomes among CKD patients in a nationwide cohort.

View Article and Find Full Text PDF

The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease.

View Article and Find Full Text PDF

Renal tubules are featured with copious mitochondria and robust transport activity. Mutations in mitochondrial genes cause congenital renal tubulopathies, and changes in transport activity affect mitochondrial morphology, suggesting mitochondrial function and transport activity are tightly coupled. Current methods of using bulk kidney tissues or cultured cells to study mitochondrial bioenergetics are limited.

View Article and Find Full Text PDF

Unlabelled: Renal tubules are featured with copious mitochondria and robust transport activity. Mutations in mitochondrial genes cause congenital renal tubulopathies, and changes in transport activity affect mitochondrial morphology, suggesting mitochondrial function and transport activity are tightly coupled. Current methods of using bulk kidney tissues or cultured cells to study mitochondrial bioenergetics are limited.

View Article and Find Full Text PDF

This study, utilizing SBF-SEM, reveals structural alterations in mitochondria and myofibrils in human heart failure (HF). Mitochondria in HF show changes in structure, while myofibrils exhibit increased cross-sectional area and branching. Metabolomic and lipidomic analyses indicate concomitant dysregulation in key pathways.

View Article and Find Full Text PDF

During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized.

View Article and Find Full Text PDF

With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress.

View Article and Find Full Text PDF

Background: Renal amyloidosis (RA) has a worldwide incidence of 5-13 cases per million person-years and is expected to rise in upcoming years due to growing awareness, plus improvement of diagnostic modalities. Diagnosing RA remains challenging, especially when encountering very small, focal, or early amyloid deposits. Since delays in diagnosis portends poor prognosis, high morbidity, and mortality, it is crucial to evaluate the performance of commonly used diagnostic modalities.

View Article and Find Full Text PDF

Despite tremendous diversity, Asian Americans in STEM are grouped and viewed as a homogeneous monolith, facing stereotypes and disparities. We propose solutions that include disaggregating the Asian American grouping and recognizing the diverse individual ethnic subgroups that comprise Americans of Asian ancestry to implement change within the STEM field.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) is one of the most important signaling pathways that regulate nutrient sensing, cell growth, metabolism, and aging. The mTOR pathway, particularly mTOR complex 1 (mTORC1), has been shown to control aging, lifespan, and healthspan through the regulation of protein synthesis, autophagy, mitochondrial function, and metabolic health. The mTOR pathway also plays critical roles in the heart, from cardiac development, growth and maturation, and maintenance of cardiac homeostasis.

View Article and Find Full Text PDF

Mitochondrial oxidative stress has been implicated in aging and several cardiovascular diseases, including heart failure and cardiomyopathy, ventricular tachycardia, and atrial fibrillation. The role of mitochondrial oxidative stress in bradyarrhythmia is less clear. Mice with a germline deletion of Ndufs4 subunit respiratory complex I develop severe mitochondrial encephalomyopathy resembling Leigh Syndrome (LS).

View Article and Find Full Text PDF

Introduction: Many studies in mice have demonstrated that cardiac-specific innate immune signaling pathways can be reprogrammed to modulate inflammation in response to myocardial injury and improve outcomes. While the echocardiography standard parameters of left ventricular (LV) ejection fraction, fractional shortening, end-diastolic diameter, and others are used to assess cardiac function, their dependency on loading conditions somewhat limits their utility in completely reflecting the contractile function and global cardiovascular efficiency of the heart. A true measure of global cardiovascular efficiency should include the interaction between the ventricle and the aorta (ventricular-vascular coupling, VVC) as well as measures of aortic impedance and pulse wave velocity.

View Article and Find Full Text PDF

Introduction: Renal intravascular large B-cell lymphoma (IVLBCL) is a rare, aggressive B-cell lymphoma with neoplastic cells occupying the vascular lumina with only 53 patients reported to date. Here, we present the largest case series to characterize this rare disease.

Methods: We performed a multi-institutional, retrospective review of kidney biopsies and autopsies with a diagnosis of kidney IVLBCL and report our findings.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) is associated with a strongly increased risk for restenosis after angioplasty driven by proliferation of vascular smooth muscle cells (VSMCs). Here, we sought to determine whether and how mitochondrial dysfunction in T2D drives VSMC proliferation with a focus on ROS and intracellular [Ca ] that both drive cell proliferation, occur in T2D and are regulated by mitochondrial activity.

Methods: Using a diet-induced mouse model of T2D, the inhibition of the mitochondrial Ca /calmodulin-dependent kinase II (mtCaMKII), a regulator of Ca entry via the mitochondrial Ca uniporter selectively in VSMCs, we performed in vivo phenotyping after mechanical injury and established the mechanisms of excessive proliferation in cultured VSMCs.

View Article and Find Full Text PDF

Neuroinflammation is one of the main mechanisms leading to neuronal death and dysfunction in neurodegenerative diseases. The role of microglia as primary mediators of inflammation is unclear in Leigh syndrome (LS) patients. This study aims to elucidate the role of microglia in LS progression by a detailed multipronged analysis of LS neuropathology, mouse and human induced pluripotent stem cells models of Leigh syndrome.

View Article and Find Full Text PDF

In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software.

View Article and Find Full Text PDF

Background: Mice with deletion of complex I subunit Ndufs4 develop mitochondrial encephalomyopathy resembling Leigh syndrome (LS). The metabolic derangement and underlying mechanisms of cardio-encephalomyopathy in LS remains incompletely understood.

Methods: We performed echocardiography, electrophysiology, confocal microscopy, metabolic and molecular/morphometric analysis of the mice lacking Ndufs4.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) may cause a wide spectrum of kidney pathologies. The impact of COVID-19 is unclear in the context of the complement system abnormalities, including C3 glomerulopathy (C3G). In this report, we describe a young adult receiving a kidney transplant for C3 glomerulopathy (C3G), a disorder of the alternative complement pathway.

View Article and Find Full Text PDF

Pregnancy is proposed to aggravate cyst progression in autosomal dominant polycystic kidney disease (ADPKD) but Tolvaptan, the only FDA-approved drug for adult ADPKD, is not recommended for pregnant ADPKD patients because of potential fetal harm. Since pregnancy itself may increase the risk for ADPKD progression, we investigated the safety and efficacy of Elamipretide, a mitochondrial-protective tetrapeptide. Elamipretide was found to ameliorate the progression of kidney disease in pregnant Pkd1 mice, in parallel with attenuation of ERK1/2 phosphorylation and improvement of mitochondrial supercomplex formation.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressively enlarging cysts. Here we elucidate the interplay between oxidative stress, mitochondrial dysfunction, and metabolic derangement using two mouse models of PKD1 mutation, PKD1 and PKD1. Mouse kidneys with PKD1 mutation have decreased mitochondrial complexes activity.

View Article and Find Full Text PDF

Loss of function of the lipid kinase diacylglycerol kinase ε (DGKε), encoded by the gene DGKE, causes a form of atypical hemolytic uremic syndrome that is not related to abnormalities of the alternative pathway of the complement, by mechanisms that are not understood. By generating a potentially novel endothelial specific Dgke-knockout mouse, we demonstrate that loss of Dgke in the endothelium results in impaired signaling downstream of VEGFR2 due to cellular shortage of phosphatidylinositol 4,5-biphosphate. Mechanistically, we found that, in the absence of DGKε in the endothelium, Akt fails to be activated upon VEGFR2 stimulation, resulting in defective induction of the enzyme cyclooxygenase 2 and production of prostaglandin E2 (PGE2).

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P), is a signaling sphingolipid which acts as a bioactive lipid mediator. We assessed whether S1P had multiplex effects in regulating the large-conductance Ca-activated K channel (BK) in catecholamine-secreting chromaffin cells. Using multiple patch-clamp modes, Ca imaging, and computational modeling, we evaluated the effects of S1P on the Ca-activated K currents () in bovine adrenal chromaffin cells and in a pheochromocytoma cell line (PC12).

View Article and Find Full Text PDF