The development of adsorbents with outstanding adsorption capacities, wide versatility, and excellent recyclability for the removal of organic dyes remains a challenge. In this study, a quaternised chitosan-based aerogel (QCSA) was fabricated via a facile method to effectively treat concomitant anionic dyes. Porous QCSA with high hydrophilicity, nontoxicity, excellent thermal stability, and sustainability exhibits adsorption properties superior to most previously reported adsorbents.
View Article and Find Full Text PDFThe pigments in sugarcane result the crystallised sucrose appears unsatisfactorily yellow. In this study, cationic tapioca starch (CTS)-functionalized magnetic nanoparticles (CTS@FeO) were synthesized and used as adsorbents for the removal of undesirable pigments. The adsorption properties of CTS@FeO were investigated by a sugarcane juice colorant model consisting of caffeic acid (CA), gallic acid (GA) and melanoidin (ME).
View Article and Find Full Text PDFThe vegetable oil industry is limited by the high cost of the refining process, and the camellia shells (CS) are beneficial to the development of the industry as a biomass raw material for camellia oil decolorization. In this study, CS-based p-doped porous activated carbon (CSHAC) obtained after the pyrolysis of HPO-laden CS-hydrochar (CSH) was used for the adsorption of carotenoids in camellia oil. The results showed that the adsorption efficiency of CSHAC for carotenoids was 96.
View Article and Find Full Text PDFCamellia oil is an edible health oil with high medicinal value. While phospholipids, peroxides, and free fatty acids are present in unrefined camellia virgin oil (CVO), which has a negative impact on the quality characteristics and storage stability. This paper is to investigate the testing effects of transmembrane pressure and temperature on the membrane flux and degumming (the removal of colloidal substances from crude oil and which is mainly phospholipids) to determine the optimum process parameters for the purification of CVO.
View Article and Find Full Text PDFSalinity is an important abiotic stress that affects metabolic and physiological activities, breed, development, and growth of marine fish. Studies have shown that cobia (Rachycentron canadum), a euryhaline marine teleost fish, possesses the ability of rapid and effective hyper/hypo iono- and osmoregulation. However, genomic studies on this species are lacking and it has not been studied at the transcriptome level to identify the genes responsible for salinity regulation, which affects the understanding of the fundamental mechanism underlying adaptation to fluctuations in salinity.
View Article and Find Full Text PDF