To evaluate the feasibility of acquiring vertebral height from chest low-dose computed tomography (LDCT) images using an artificial intelligence (AI) system based on 3D U-Net vertebral segmentation technology and the correlation and features of vertebral morphology with sex and age of the Chinese population. Patients who underwent chest LDCT between September 2020 and April 2023 were enrolled. The Altman and Pearson's correlation analyses were used to compare the correlation and consistency between the AI software and manual measurement of vertebral height.
View Article and Find Full Text PDFPurpose: To investigate the difference in vertebral morphology and bone mineral density (BMD) between grade 1 VFs and non-fractured participants in the Chinese population to shed light on the clinical significance of grade 1 VFs from various perspectives.
Methods: This retrospective cohort study included patients who received a chest low-dose computed tomography (LDCT) scan for health examination and visited the First Affiliated Hospital of Zhengzhou University, Henan, China, from October 2019 to August 2022. Data were analyzed from March 2023 to July 2023.
To gain a more meaningful understanding of bone regeneration, it is essential to select an appropriate assessment method. Micro-computed tomography (Micro-CT) is widely used for bone regeneration because it provides a substantially higher spatial resolution. Dual-energy computed tomography (DECT) ensure shorter scan time and lower radiation doses during quantitative evaluation.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2023
Hepatocellular carcinoma (HCC) is one of the leading causes of tumor-related death worldwide. Conventional treatments for HCC include drugs, radiation, and surgery. Despite the unremitting efforts of researchers, the curative effect of HCC has been greatly improved, but because HCC is often found in the middle and late stages, the curative effect is still not satisfactory, and the 5-year survival rate is still low.
View Article and Find Full Text PDFTwo-dimensional reactive transport models, one with a simplified root system and the other accounting for dynamically evolving root architecture, were constructed to examine the influence of model complexity on capturing the effect of soil-root dynamics relating to the Oxalate Carbonate Pathway (OCP) of the Iroko tree over 170 years. Oxidation of oxalate from fallen tree tissue by soil bacteria enables local soil pH increase, leading to the sequestration of atmospheric carbon in carbonate minerals (calcite) in the shallow soil surrounding the tree. Simulations of both root models corroborate previous one-dimensional models of the OCP focused on Ca and C mass balance, where high weathering rates of Ca-containing silicate minerals in bedrock, along with contributions from groundwater, provided sufficient Ca for precipitation of observed quantities of calcite.
View Article and Find Full Text PDFIncreasing evidence indicates that macrophages play an important role in angiogenesis and bone regeneration. Because the phenotypic polarization of macrophage is extremely sensitive to the pore size of materials, poly(ether-ether-ketone) (PEEK) scaffolds with pore sizes of 0, 200, and 400 μm were prepared, and the influence of pore size-mediated macrophage polarization on subsequent angiogenesis and osteogenesis was examined. The interaction results of macrophages and scaffolds indicated that macrophages were responsive to the pore size of three-dimensional (3D)-printed PEEK scaffolds, and large pore size scaffolds showed greater potential in inducing M1 to M2 transition of macrophage and enhanced macrophage secretion of high concentrations of osteogenesis-related and angiogenesis-related cytokines.
View Article and Find Full Text PDFFerroptosis is a type of regulated cell death caused by iron overload and lipid peroxidation, and its core is an imbalance of redox reactions. Recent studies showed that ferroptosis played a dual role in liver diseases, that was, as a therapeutic target and a pathogenic factor. Therefore, herein, we summarized the role of ferroptosis in liver diseases, reviewed the part of available targets, such as drugs, small molecules, and nanomaterials, that acted on ferroptosis in liver diseases, and discussed the current challenges and prospects.
View Article and Find Full Text PDFThe rubber particles obtained from the grinding of waste tires can replace a portion of the fine aggregates in concrete, thus effectively reducing the level of environmental damage and saving resources. However, when concrete is mixed with rubber, it greatly reduces its strength. In this study, by introducing basalt fiber (BF) and polypropylene fiber (PF) as modified materials in rubberized concrete, the influence of the fiber type/volume ratio on the slump, water absorption, static uniaxial compression, and permeability of the rubberized concrete was tested.
View Article and Find Full Text PDFBackground And Purpose: To investigate the image quality and accurate bone mineral density (BMD) on quantitative CT (QCT) for osteoporosis screening by deep-learning image reconstruction (DLIR) based on a multi-phantom and patient study.
Materials And Methods: High-contrast spatial resolution, low-contrast detectability, modulation function test (MTF), noise power spectrum (NPS), and image noise were evaluated for physical image quality on Caphan 500 phantom. Three calcium hydroxyapatite (HA) inserts were used for accurate BMD measurement on European Spine Phantom (ESP).
Purpose: Determine the association between cross-sectional visceral adipose tissue (VAT) area of different anatomic locations and total abdominopelvic VAT volume; identify the optimal measurement site in a single-slice to quantify the total VAT volume.
Method: Participants who underwent non-contrast abdominal scan by quantitative CT (QCT) were enrolled from May 2021 to October 2021. The VAT area (cm) at different anatomic sites as upper-pole, lower-pole, and hilum of the kidney, intervertebral disc of L2/L3 and L5/S1, and umbilical level were measured on QCT PRO BMD workstation (Mindways QCT PRO workstation).
In order to enhance the corrosion resistance of concrete to chloride salt, 5% NaCl solution was used to corrode ordinary concrete (OC) and rubber concrete (RC) with 5%, 10%, and 15% rubber content, respectively. By testing the compressive strength, mass, chloride ion concentration at different depths and relative dynamic elastic modulus, the erosion mechanism was analyzed by means of SEM scanning and EDS patterns, and the mechanical properties and deterioration degree of ordinary concrete (OC) and rubber concrete (RC) under the corrosion environment of chloride salt were studied. The results show that: the quality of rubber mixed into concrete increases first and then decreases, and rubber can increase the compressive strength of concrete, improve its internal structure.
View Article and Find Full Text PDFThe potential of LNAPL delineation by Rn soil-gas monitoring in a chemically heterogeneous vadose zone was investigated in this study based on laboratory (batch and columns) experiments and numerical modelling. An enhanced version of the MIN3P reactive transport code was used to simulate Rn transport in both uncontaminated and NAPL-contaminated vadose zones and results were validated against analytical solutions and laboratory experiments. Results show that Rn activity profiles are mainly controlled by porous media Rn production, vadose zone fluid saturations and especially the type and distribution of NAPL in contaminated areas.
View Article and Find Full Text PDF