Publications by authors named "Danya Lyu"

Understanding the structure-activity relationship of catalysts and the reaction pathway is crucial for designing efficient, selective, and stable electrocatalytic systems. vibrational spectroscopy provides a unique tool for decoding molecular-level factors involved in electrocatalytic reactions. Typically, spectra are recorded when the system reaches steady states under set potentials, known as steady-state measurements, providing static pictures of electrode properties at specific potentials.

View Article and Find Full Text PDF

Revealing the binding affinity between viruses and surfaces of environmental matrices is crucial to evaluate the bioactivity of an immobilized virus and accompanying indirect virus-related infection pathways. The understanding for SARS-CoV-2 remaining infective for even days on stainless steel but only hours on copper is still unclear. Electrochemical chronoamperometry, ultrasensitive to interfacial capacitance on surface species, was used to investigate the binding affinity of SARS-CoV-2 on metal surfaces.

View Article and Find Full Text PDF

With the advances in instrumentation and sampling techniques, there is an explosive growth of data from molecular and cellular samples. The call to extract more information from the large data sets has greatly challenged the conventional chemometrics method. Deep learning, which utilizes very large data sets for finding hidden features therein and for making accurate predictions for a wide range of applications, has been applied in an unbelievable pace in biospectroscopy and biospectral imaging in the recent 3 years.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique with sensitivity down to the single molecule level that provides fine molecular fingerprints, allowing for direct identification of target analytes. Extensive theoretical and experimental research, together with continuous development of nanotechnology, has significantly broadened the scope of SERS and made it a hot research field in chemistry, physics, materials, biomedicine, and so on. However, SERS has not been developed into a routine analytical technique, and continuous efforts have been made to address the problems preventing its real-world application.

View Article and Find Full Text PDF

DNA hydrogels, which take advantage of the unique properties of functional DNA motifs, such as specific molecular recognition, programmable and high-precision assembly, multifunctionality, and excellent biocompatibility, have attracted increasing research interest in the past two decades in diverse fields, especially in biosensing and biomedical applications. The responsiveness of smart DNA hydrogels to external stimuli by changing their swelling volume, crosslinking density, and optical or mechanical properties has facilitated the development of DNA-hydrogel-based in vitro biosensing systems and actuators. Furthermore, reducing the sizes of DNA hydrogels to the micro- and nanoscale leads to better responsiveness and delivery capacity, thereby making them excellent candidates for rapid detection, in vivo real-time sensing, and drug release applications.

View Article and Find Full Text PDF

DNA-templated silver nanoclusters (DNA-Ag NCs) have shown great potential in various bioanalysis and bioimaging applications, owing to their facile synthesis and ultrasmall sizes and especially their programmable fluorescence emission depending on the sequences of DNA templates. However, the bioimaging applications of DNA-Ag NCs are severely limited by their poor stability in physiological environments and their poor cell permeability, resulting from the highly negatively charged DNA backbones. In this paper, cationic polyelectrolytes were used to modify fluorescent DNA-Ag NCs via electrostatic interactions between the positive polymer backbones and the negatively charged phosphate groups of the DNA strands.

View Article and Find Full Text PDF

A facile strategy is illustrated to reversibly modulate CsPbBr3 perovskite nanocrystal/Au nanoparticle heterostructures with the reversible formation and fragmentation of gold nanoparticles anchored to the corners and surface of CsPbBr3 perovskite nanocrystals. The modulation process was performed under ambient conditions and could be conducted for cycles.

View Article and Find Full Text PDF

A novel stimuli-responsive hydrogel system with liposomes serving as both noncovalent crosslinkers and functional small molecules carriers for controlled-release is developed. Liposomes can crosslink polyacrylamide copolymers functionalized with cholesterol-modified DNA motifs to yield a DNA hydrogel system, due to the hydrophobic interaction between cholesteryl groups and the lipid bilayer of liposomes. Functional information encoded DNA motifs on the polymer backbones endow the hydrogel with programmable smart responsive properties.

View Article and Find Full Text PDF

Polymer monolith microextraction (PMME) based on capillary monolithic column is an effective and useful technique to preconcentrate trace analytes from environmental and biological samples. Here, we report the fabrication of a novel aluminum terephthalate metal-organic framework (MIL-53(Al)) incorporated capillary monolithic column via in situ polymerization for the PMME of non-steroidal anti-inflammatory drugs (NSAIDs) (ketoprofen, fenbufen and ibuprofen) in water and urine samples. The fabricated MIL-53(Al) incorporated monolith was characterized by X-ray powder diffractometry, scanning electron microscopy, Fourier transform infrared spectrometry, and nitrogen adsorption experiment.

View Article and Find Full Text PDF