Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ(70)-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator-DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation.
View Article and Find Full Text PDFBinding and unbinding of transcription regulators at operator sites constitute a primary mechanism for gene regulation. While many cellular factors are known to regulate their binding, little is known on how cells can modulate their unbinding for regulation. Using nanometer-precision single-molecule tracking, we study the unbinding kinetics from DNA of two metal-sensing transcription regulators in living Escherichia coli cells.
View Article and Find Full Text PDFUnderstanding how cells regulate and transport metal ions is an important goal in the field of bioinorganic chemistry, a frontier research area that resides at the interface of chemistry and biology. This Current Topic reviews recent advances from the authors' group in using single-molecule fluorescence imaging techniques to identify the mechanisms of metal homeostatic proteins, including metalloregulators and metallochaperones. It emphasizes the novel mechanistic insights into how dynamic protein-DNA and protein-protein interactions offer efficient pathways via which MerR-family metalloregulators and copper chaperones can fulfill their functions.
View Article and Find Full Text PDFMetalloregulators regulate transcription in response to metal ions. Many studies have provided insights into how transcription is activated upon metal binding by MerR-family metalloregulators. In contrast, how transcription is turned off after activation is unclear.
View Article and Find Full Text PDF