J Opt Soc Am A Opt Image Sci Vis
March 2016
Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10 deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v).
View Article and Find Full Text PDFTranslation of resting-state functional connectivity (FC) magnetic resonance imaging (rs-fMRI) applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs) in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40) under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility.
View Article and Find Full Text PDFIntroduction: Functional connectivity (FC) studies have gained immense popularity in the evaluation of several neurological disorders, such as Alzheimer's disease (AD). AD is a complex disorder, characterised by several pathological features. The problem with FC studies in patients is that it is not straightforward to focus on a specific aspect of pathology.
View Article and Find Full Text PDFPsychophysical sensitivity to isoluminant chromatic modulation declines at temporal frequencies beyond 4 Hz, whereas chromatically opponent cells of the afferent visual pathway (long- to middle-wavelength (L-M) cone-opponent or short-wavelength (S) cone cells) show responses at much higher temporal frequencies, indicating a central limitation in temporal processing capacity. Here, we sought to localize this limit in cortical retinotopic visual areas. We used fMRI to investigate responses of lateral geniculate nucleus and cortical visual areas in humans to isoluminant chromatic modulation as a function of temporal frequency (2-12 Hz).
View Article and Find Full Text PDF