Philos Trans A Math Phys Eng Sci
October 2022
Despite enormous scientific and technological progress in numerical weather and climate prediction, sea ice still remains unreliably predicted by models, both in short-term forecasting and climate projection applications. The total ice extent in both hemispheres is tied to the location of the ice edge, and consequently to what happens in the portion of the ice cover immediately adjacent to the open ocean that is called the marginal ice zone (MIZ). There is mounting evidence that processes occurring in the MIZ might play an important role in the polar climate of both hemispheres, yet some key physical processes are still missing in models.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2022
With the increasing resolution of operational forecasting models, the marginal ice zone (MIZ), the area where waves and sea ice interact, can now be better represented. However, the proper mechanics of wave propagation and attenuation in ice, and especially their influence on sea ice dynamics, still remain poorly understood and constrained in models. Observations have shown exponential wave energy decrease with distance in sea ice, particularly strong at higher frequencies.
View Article and Find Full Text PDFRhodamine water tracer (RWT) released during the 2021 Tracer Release Experiment in the St. Lawrence Estuary provides a proxy for the water-soluble fractions of contaminant spills. Measurements of total and size-resolved aerosols were taken onboard a research vessel throughout the experiment.
View Article and Find Full Text PDFDespite the abundance and proximity of edible marine resources, coastal communities along the St. Lawrence in Eastern Québec rarely consume these resources. Within a community-based food sovereignty project, Manger notre Saint-Laurent ("Sustenance from our St.
View Article and Find Full Text PDFClimate changes in the Arctic may weaken the currently tight pelagic-benthic coupling. In response to decreasing sea ice cover, arctic marine systems are expected to shift from a 'sea-ice algae-benthos' to a 'phytoplankton-zooplankton' dominance. We used mollusc shells as bioarchives and fatty acid trophic markers to estimate the effects of the reduction of sea ice cover on the food exported to the seafloor.
View Article and Find Full Text PDF