The number, morphology and elemental composition of nanoparticles (<100 nm) in marine water was investigated using Variable Pressure Scanning Electron Microscopy (VP-SEM) and Energy-dispersive X-ray spectroscopy (EDS). Preliminary research conducted in the Baltic Sea showed that the number of nanoparticles in seawater varied from undetectable to 380 (x10) cm. Wind mixing and density barriers (thermocline) had a significant impact on the abundance and distribution of nanoparticles in water.
View Article and Find Full Text PDFIn this study, the role of nanoparticles in complex aqueous matrices such as the Baltic Sea was investigated in batch-mode experiments in which titanium dioxide nanoparticles (nano-TiO) were tested for their ability to remove heavy metals (Cr, Pb, Cu, Zn, Cd, Ni, Co) from multicomponent spiked and non-spiked Baltic Sea water. The experimental data were analyzed using different isotherms (Langmuir, Freundlich, Dubinin-Kaganer-Radushkevich (DKR)) and models (pseudo-first-order and pseudo-second-order models, the double-exponential model, and the Weber-Morris model). The equilibria and kinetic investigations showed that metal sorption to nano-TiO occurs in a two-step, multilayer process and that there is strong competition for sorption sites.
View Article and Find Full Text PDFMicroplastics' (particles size ≤5 mm) sources and fate in marine bottom and beach sediments of the brackish are strongly polluted Baltic Sea have been investigated. Microplastics were extracted using sodium chloride (1.2 g cm).
View Article and Find Full Text PDFThis paper reports the reconstruction of the pollution history of 4-tert-octylphenol (OP) and 4-nonylphenol (NP) in the Baltic Sea. Alkylphenols are endocrine-disrupting compound and therefore toxic to aquatic organisms. Sediment cores were collected from regions with relatively stable sedimentation conditions.
View Article and Find Full Text PDF