The identification of human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem revitalized hopes of developing a universal influenza vaccine. Using a rational design and library approach, we engineered stable HA stem antigens ("mini-HAs") based on an H1 subtype sequence. Our most advanced candidate exhibits structural and bnAb binding properties comparable to those of full-length HA, completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys.
View Article and Find Full Text PDFHybrid antimicrobials containing an antibacterial linked to a multidrug resistance (MDR) pump inhibitor make up a promising new class of agents for countering efflux-mediated bacterial drug resistance. This study explores the effects of varying the relative orientation of the antibacterial and efflux pump inhibitor components in three isomeric hybrids (SS14, SS14-M, and SS14-P) which link the antibacterial alkaloid and known substrate for the NorA MDR pump berberine to different positions on INF55 (5-nitro-2-phenylindole), an inhibitor of NorA. The MICs for all three hybrids against wild-type, NorA-knockout, and NorA-overexpressing Staphylococcus aureus cells were found to be similar (9.
View Article and Find Full Text PDFConjugation of the NorA substrate berberine and the NorA inhibitor 5-nitro-2-phenyl-1H-indole via a methylene ether linking group gave the 13-substituted berberine-NorA inhibitor hybrid, 3. A series of simpler arylmethyl ether hybrid structures were also synthesized. The hybrid 3 showed excellent antibacterial activity (MIC Staphylococcus aureus, 1.
View Article and Find Full Text PDFProtein translocation in Escherichia coli is mediated by the translocase that, in its minimal form, comprises a protein-conducting pore (SecYEG) and a motor protein (SecA). The SecYEG complex forms a narrow channel in the membrane that allows passage of secretory proteins (preproteins) in an unfolded state only. It has been suggested that the SecA requirement for translocation depends on the folding stability of the mature preprotein domain.
View Article and Find Full Text PDFHow chaperone interactions affect protein folding pathways is a central problem in biology. With the use of optical tweezers and all-atom molecular dynamics simulations, we studied the effect of chaperone SecB on the folding and unfolding pathways of maltose binding protein (MBP) at the single-molecule level. In the absence of SecB, we find that the MBP polypeptide first collapses into a molten globulelike compacted state and then folds into a stable core structure onto which several alpha helices are finally wrapped.
View Article and Find Full Text PDFProtein translocation across the cellular membranes is an ubiquitous and crucial activity of cells. This process is mediated by translocases that consist of a protein conducting channel and an associated motor protein. Motor proteins interact with protein substrates and utilize the free energy of ATP binding and hydrolysis for protein unfolding, translocation and unbinding.
View Article and Find Full Text PDFIn Escherichia coli, secretory proteins (preproteins) are translocated across the cytoplasmic membrane by the Sec system composed of a protein-conducting channel, SecYEG, and an ATP-dependent motor protein, SecA. After binding of the preprotein to SecYEG-bound SecA, cycles of ATP binding and hydrolysis by SecA are thought to drive the stepwise translocation of the preprotein across the membrane. To address how the length of a preprotein substrate affects the SecA-driven translocation process, we constructed derivatives of the precursor of the outer membrane protein A (proOmpA) with 2, 4, 6, and 8 in-tandem repeats of the periplasmic domain.
View Article and Find Full Text PDFBinding-protein-dependent secondary transporters make up a unique transport protein family. They use a solute-binding protein in proton-motive-force-driven transport. Only a few systems have been functionally analysed.
View Article and Find Full Text PDF