Background: The mammalian target of rapamycin (mTOR) kinase controls cell growth, proliferation, and metabolism through 2 distinct multiprotein complexes, mTORC1 and mTORC2. We reported that alcohol (EtOH) inhibits mTORC1 activity and protein synthesis in C2C12 myoblasts. However, the role that mTORC2 plays in this process has not been elucidated.
View Article and Find Full Text PDFThe mTORC1 protein kinase complex consists of mTOR, raptor, mLST8/GbetaL and PRAS40. Previously, we reported that mTOR plays an important role in regulating protein synthesis in response to alcohol (EtOH). However, the mechanisms by which EtOH regulates mTORC1 activity have not been established.
View Article and Find Full Text PDFHIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery.
View Article and Find Full Text PDFEthanol decreases protein synthesis in cells, although the underlying regulatory mechanisms of this process are not fully established. In the present study incubation of C2C12 myocytes with 100 mm EtOH decreased protein synthesis while markedly increasing the phosphorylation of eukaryotic elongation factor 2 (eEF2), a key component of the translation machinery. Both mTOR and MEK pathways were found to play a role in regulating the effect of EtOH on eEF2 phosphorylation.
View Article and Find Full Text PDFBackground: Alcohol and the antiretroviral drug indinavir (Ind) decrease protein synthesis in skeletal muscle under in vivo and in vitro conditions. The goal of the present study was to identify signaling mechanisms responsible for the inhibitory effect of ethanol (EtOH) and Ind on protein synthesis.
Methods: C2C12 mouse myocytes were incubated with EtOH, Ind, or a combination of both for 24 hours.