Publications by authors named "Danuta M Wisniewska"

Energy governs species' life histories and pace of living, requiring individuals to make trade-offs. However, measuring energetic parameters in the wild is challenging, often resulting in data collected from heterogeneous sources. This complicates comprehensive analysis and hampers transferability within and across case studies.

View Article and Find Full Text PDF

Many large terrestrial mammalian predators use energy-intensive, high-risk, high-gain strategies to pursue large, high-quality prey. However, similar-sized marine mammal predators with even higher field metabolic rates (FMRs) consistently target prey three to six orders of magnitude smaller than themselves. Here, we address the question of how these active and expensive marine mammal predators can gain sufficient energy from consistently targeting small prey during breath-hold dives.

View Article and Find Full Text PDF

There is great interest in measuring immune function in wild animals. Yet, field conditions often have methodological challenges related to handling stress, which can alter physiology. Despite general consensus that immune function is influenced by handling stress, previous studies have provided equivocal results.

View Article and Find Full Text PDF

Animal-borne tagging (bio-logging) generates large and complex datasets. In particular, accelerometer tags, which provide information on behaviour and energy expenditure of wild animals, produce high-resolution multi-dimensional data, and can be challenging to analyse. We tested the performance of commonly used artificial intelligence tools on datasets of increasing volume and dimensionality.

View Article and Find Full Text PDF

The impressive breath-hold capabilities of marine mammals are facilitated by both enhanced O stores and reductions in the rate of O consumption via peripheral vasoconstriction and bradycardia, called the dive response. Many studies have focused on the extreme role of the dive response in maximizing dive duration in marine mammals, but few have addressed how these adjustments may compromise the capability to hunt, digest and thermoregulate during routine dives. Here, we use DTAGs, which record heart rate together with foraging and movement behaviour, to investigate how O management is balanced between the need to dive and forage in five wild harbour porpoises that hunt thousands of small prey daily during continuous shallow diving.

View Article and Find Full Text PDF

Visual predators rely on fast-acting optokinetic responses to track and capture agile prey. Most toothed whales, however, rely on echolocation for hunting and have converged on biosonar clicking rates reaching 500/s during prey pursuits. If echoes are processed on a click-by-click basis, as assumed, neural responses 100× faster than those in vision are required to keep pace with this information flow.

View Article and Find Full Text PDF

Energy drives behaviour and life history decisions, yet it can be hard to measure at fine scales in free-moving animals. Accelerometry has proven a powerful tool to estimate energy expenditure, but requires calibration in the wild. This can be difficult in some environments, or for particular behaviours, and validations have produced equivocal results in some species, particularly air-breathing divers.

View Article and Find Full Text PDF

The impact of anthropogenic noise on marine fauna is of increasing conservation concern with vessel noise being one of the major contributors. Animals that rely on shallow coastal habitats may be especially vulnerable to this form of pollution.Very limited information is available on how much noise from ship traffic individual animals experience, and how they may react to it due to a lack of suitable methods.

View Article and Find Full Text PDF

Reliable estimates of field metabolic rates (FMRs) in wild animals are essential for quantifying their ecological roles, as well as for evaluating fitness consequences of anthropogenic disturbances. Yet, standard methods for measuring FMR are difficult to use on free-ranging cetaceans whose FMR may deviate substantially from scaling predictions using terrestrial mammals. Harbour porpoises () are among the smallest marine mammals, and yet they live in cold, high-latitude waters where their high surface-to-volume ratio suggests high FMRs to stay warm.

View Article and Find Full Text PDF

Toothed whales are apex predators varying in size from 40-kg porpoises to 50-ton sperm whales that all forage by emitting high-amplitude ultrasonic clicks and listening for weak returning echoes [1, 2]. The sensory field of view of these echolocating animals depends on the characteristics of the biosonar signals and the morphology of the sound generator, yet it is poorly understood how these biophysical relationships have shaped the evolution of biosonar parameters as toothed whales adapted to different foraging niches. Here we test how biosonar output, frequency, and directivity vary with body size to understand the co-evolution of biosonar signals and sound-generating structures.

View Article and Find Full Text PDF

Shipping is the dominant marine anthropogenic noise source in the world's oceans, yet we know little about vessel encounter rates, exposure levels and behavioural reactions for cetaceans in the wild, many of which rely on sound for foraging, communication and social interactions. Here, we used animal-borne acoustic tags to measure vessel noise exposure and foraging efforts in seven harbour porpoises in highly trafficked coastal waters. Tagged porpoises encountered vessel noise 17-89% of the time and occasional high-noise levels coincided with vigorous fluking, bottom diving, interrupted foraging and even cessation of echolocation, leading to significantly fewer prey capture attempts at received levels greater than 96 dB re 1 µPa (16 kHz third-octave).

View Article and Find Full Text PDF

Sperm whales produce codas for communication that can be grouped into different types according to their temporal patterns. Codas have led researchers to propose that sperm whales belong to distinct cultural clans, but it is presently unclear if they also convey individual information. Coda clicks comprise a series of pulses and the delay between pulses is a function of organ size, and therefore body size, and so is one potential source of individual information.

View Article and Find Full Text PDF

The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator's role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly.

View Article and Find Full Text PDF

In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment.

View Article and Find Full Text PDF

Cetaceans rely critically on sound for navigation, foraging and communication and are therefore potentially affected by increasing noise levels from human activities at sea. Shipping is the main contributor of anthropogenic noise underwater, but studies of shipping noise effects have primarily considered baleen whales due to their good hearing at low frequencies, where ships produce most noise power. Conversely, the possible effects of vessel noise on small toothed whales have been largely ignored due to their poor low-frequency hearing.

View Article and Find Full Text PDF
Article Synopsis
  • Toothed whales utilize sonar for hunting by adjusting sound intensity and click rates, but their narrow acoustic field of view remains stable, potentially allowing prey to escape at close range.
  • New research demonstrates that harbour porpoises can expand their sonar beam while pursuing prey, unlike bats, and can adjust this beamwidth during the attack.
  • This adaptability is hypothesized to be managed by the melon, enabling the whales to respond to complex environments, suggesting that flexible beamwidth has played a critical role in the evolution of echolocation in both whales and bats.
View Article and Find Full Text PDF

Echolocating bats and toothed whales probe their environment with ultrasonic sound pulses, using returning echoes to navigate and find prey in a process that appears to have resulted from a remarkable convergence of the two taxa. Here, we report the first detailed quantification of echolocation behaviour during prey capture in the most studied delphinid species, a false killer whale and a bottlenose dolphin. Using acoustic DTAGs, we demonstrate that just prior to prey interception these delphinids change their acoustic gaze dramatically by reducing inter-click intervals and output >10-fold in a high repetition rate, low output buzz.

View Article and Find Full Text PDF

A key component in understanding the ecological role of marine mammal predators is to identify how and where they capture prey in time and space. Satellite and archival tags on pinnipeds generally only provide diving and position information, and foraging is often inferred to take place in particular shaped dives or when the animal remains in an area for an extended interval. However, fast movements of the head and jaws may provide reliable feeding cues that can be detected by small low-power accelerometers mounted on the head.

View Article and Find Full Text PDF

Visually dominant animals use gaze adjustments to organize perceptual inputs for cognitive processing. Thereby they manage the massive sensory load from complex and noisy scenes. Echolocation, as an active sensory system, may provide more opportunities to control such information flow by adjusting the properties of the sound source.

View Article and Find Full Text PDF