In this study, the possibility of using mixing water containing O and O micro-nano bubbles (M-NBs) in concrete technology was investigated. In particular, the effect of micro-nano bubbles on the durability and frost resistance of concrete was analyzed. Concretes with two types of micro-nano bubbles were studied.
View Article and Find Full Text PDFNanocellulose (NC) is a natural polymer that has driven significant progress in recent years in the study of the mechanical properties of composites, including cement composites. Impressive mechanical properties, ability to compact the cement matrix, low density, biodegradability, and hydrophilicity of the surface of nanocellulose particles (which improves cement hydration) are some of the many benefits of using NCs in composite materials. The authors briefly presented a description of the types of NCs (including the latest, little-known shapes), showing the latest developments in their manufacture and modification.
View Article and Find Full Text PDFIn this article, the static response of a functionally graded material (FGM) plate is studied via hybrid higher-order shear deformation theory which uses hyperbolic and polynomial shape functions and includes the effect of thickness stretching. The composition of the plate comprises metallic and ceramic phases. The ceramic volume fraction varies gradually along with the thickness following the power law.
View Article and Find Full Text PDFThe present paper investigates the axial and shear buckling analysis of a carbon nanotube (CNT)-reinforced multiscale functionally graded material (FGM) plate. Modified third-order deformation theory (MTSDT) with transverse displacement variation is used. CNT materials are assumed to be uniformly distributed, and ceramic fibers are graded according to a power-law distribution of the volume fraction of the constituents.
View Article and Find Full Text PDFIn the article, unique formulations of biodegradable, non-toxic, edible oil-based release oils were developed and tested on architectural concrete. The produced agents have physicochemical properties similar to diesel fuel, but at the same time, are renewable and biodegradable products. An ultrasound was used to properly combine the liquid phase of edible oil and the liquid phase of glyceryl trioleate and/or water.
View Article and Find Full Text PDFThe paper presents the experimental studies on the effect of the water containing micro-nano bubbles of various gases on the physico-mechanical properties of lime-cement mortars. In total, 7 types of mortars were prepared: with water containing the micro-nano bubbles of O, O or CO as 50% or 100% substitute of ordinary mixing water (tap water) and the reference mortar prepared using tap water. In order to determine the influence of water with micro-nano bubbles of gases, the consistency of fresh mortar and the physical properties of hardened mortar, i.
View Article and Find Full Text PDFIn the present work, for the first time, free vibration response of angle ply laminates with uncertainties is attempted using Multivariate Adaptive Regression Spline (MARS), Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Gaussian Process Regression (GPR), and Adaptive Network Fuzzy Inference System (ANFIS). The present approach employed 2D stochastic finite element (FE) model based on the Third Order Shear Deformation Theory (TSDT) in conjunction with MARS, ANN-PSO, GPR, and ANFIS. The TSDT model used eliminates the requirement of shear correction factor owing to the consideration of the actual parabolic distribution of transverse shear stress.
View Article and Find Full Text PDFThe aim of the research presented in this paper is to evaluate the feasibility of using hydrophobic agents based on organosilicon compounds for surface protection of lightweight concrete modified with waste polystyrene. The experimental part pertains to the physical and mechanical properties of polystyrene-modified lightweight concrete. The concrete samples were prepared with the following ingredients: CEM I 42.
View Article and Find Full Text PDFThe paper presented aimed at examining the effect of a fiber-reinforced concrete layer in the compressed zone on the mechanical properties of composite fiber-reinforced concrete slabs. Steel fibers (SF) and polypropylene fibers (PP) in the amount of 1% in relation to the weight of the concrete mix were used as reinforcement fibers. The mixture compositions were developed for the reference concrete, steel fiber concrete and polypropylene fiber concrete.
View Article and Find Full Text PDFThis article presents research results relating to the potential for waste utilization in the form of polymer optical fiber (POF) scraps. This material is difficult to recycle due to its diverse construction. Three different volumes of POF were used in concrete in these tests: 1%, 2%, and 3%.
View Article and Find Full Text PDFThe paper explores the possibility of covering the mortar with the lightweight aggregate by the nanopolymer silane and siloxane as surface hydrophobisation. The investigation involved the mortars with two types of hydrophobic agents diluted with water in a ratio of 1:4 and 1:8. Mortar wetting properties were determined by measuring the absorbability, water vapor diffusion, contact angle (CA) and surface free energy (SFE) of their structure.
View Article and Find Full Text PDFThe use of recycled concrete aggregates (RCA) in high performance concrete (HPC) was analyzed. The paper presents the experimental studies of model reinforced concrete beams with a rectangular section using high-performance recycled aggregates. Two variable contents of recycled aggregate concrete were used in this study: 50% and 100%.
View Article and Find Full Text PDFNanocellulose, being a material with nanodimensions, is characterized by high tensile strength, high modulus of elasticity, low thermal expansion, and relatively low density, as well as exhibiting very good electrical conductivity properties. The paper presents the results of research on cement mortars with the addition of nanocrystals cellulose, applied in three different amounts (0.5%, 1.
View Article and Find Full Text PDFThis article presents test results and examines the possibilities of using aggregate from ceramic waste for mineral-asphalt mixtures. In addition, the mineral composition, physical and mechanical properties of aggregates from natural raw materials such as dolomite, granodiorite and waste ceramic aggregate (introduced as a partial substitute for the main aggregate) were analyzed. The shape of grains was examined by determining the shape and flatness index of aggregates, resistance to grinding and frost resistance.
View Article and Find Full Text PDFMaterials (Basel)
September 2019
The paper presents the possibility of using the liquid crystal display (LCD) waste as a partial substitute of fine aggregate. Concretes with two types of cement, CEM I 42.5 R and CEM II/B-S 42.
View Article and Find Full Text PDFMaterials (Basel)
May 2019
In the presented paper, a study of bi-axial buckling of the laminated composite plate with mass variation through the cutout and additional mass is carried out using the improved shear deformation theory (ISDT). The ISDT mathematical model employs a cubic variation of thickness co-ordinates in the displacement field. A realistic parabolic distribution of transverse shear strains through the plate thickness is assumed and the use of shear correction factor is avoided.
View Article and Find Full Text PDFThe influence of roughness and the way it affects the adhesion properties and surface free energy (SFE) of polysiloxanes hydrophobised basalt fibres⁻reinforced cement mortars were determined in this article. The physical properties of mortars were investigated in the experimental part, which also explored the impact of hydrophobisation and basalt fibres (BF) addition on SFE, frost resistance, contact angle (CA), and roughness. A device capable of calculating all parameters was used to indicate the surface roughness and 3D topography.
View Article and Find Full Text PDFThe present paper is the first study on the hygrothermal analysis (i.e., effect of temperature and moisture loadings) of laminated composite skew conoids with reasonable depth and thickness.
View Article and Find Full Text PDFMaterials (Basel)
November 2018
This paper examines the effect of uniaxially aligned carbon nanotube (CNT) on flexural and free vibration analysis of CNT-reinforced functionally graded plate. The mathematical model includes expansion of Taylor's series up to the third degree in the thickness co-ordinate. Since there is a parabolic variation in transverse shear strain deformation across the thickness co-ordinate, the shear correction factor is not necessary.
View Article and Find Full Text PDFThe article presents the potential application of the time domain reflectometry (TDR) technique to measure moisture transport in unsaturated porous materials. The research of the capillary uptake phenomenon in a sample of autoclaved aerated concrete (AAC) was conducted using a TDR sensor with the modified construction for non-invasive testing. In the paper the basic principles of the TDR method as a technique applied in metrology, and its potential for measurement of moisture in porous materials, including soils and porous building materials are presented.
View Article and Find Full Text PDFThe purpose of this paper is to determine the influence of the lightweight porous perlite aggregate and two widely used types of fibres on the physical and mechanical properties, frost durability and microstructure of self-compacting lightweight concrete (SCLC). The experimental investigation consisted of tests carried out on cubes and prismatic samples made of SCLC and fibres-reinforced SCLC with variable content ranging from 0.5 to 1% of basalt fibres (BF) and/or 0.
View Article and Find Full Text PDFThis paper describes a method of designing and producing innovative mineral⁻asphalt mixtures, which utilize waste aggregate from the recycling of sanitary ceramics. The work presents the basic properties of the ceramic material, the investigation concerning the microstructure of the aggregate obtained from the grinding of waste, and a comparison with the images obtained for the aggregates usually employed in mineral⁻asphalt mixtures. The mixtures were designed for the application in the wearing course.
View Article and Find Full Text PDFThe aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork.
View Article and Find Full Text PDF