Brain-Computer Interface (BCI) technology has been shown to provide new communication possibilities, conveying brain information externally. BCI-based robot control has started to play an important role, especially in medically assistive robots but not only there. For example, a BCI-controlled robotic arm can provide patients diagnosed with neurodegenerative diseases such as Locked-in syndrome (LIS), Amyotrophic lateral sclerosis (ALS), and others with the ability to manipulate different objects.
View Article and Find Full Text PDFMotor imagery (MI) based brain-computer interfaces (BCI) extract commands in real-time and can be used to control a cursor, a robot or functional electrical stimulation (FES) devices. The control of FES devices is especially interesting for stroke rehabilitation, when a patient can use motor imagery to stimulate specific muscles in real-time. However, damage to motor areas resulting from stroke or other causes might impair control of a motor imagery BCI for rehabilitation.
View Article and Find Full Text PDFConventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment.
View Article and Find Full Text PDFConventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients' movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS.
View Article and Find Full Text PDF