Oxidative coupling of methane (OCM) is a reaction to directly convert methane into high value-added hydrocarbons (C) such as ethylene and ethane using molecular oxygen and a catalyst. This work investigated lanthanum oxide catalysts for OCM, which were promoted with alkaline-earth metal oxides (Mg, Ca, Sr, and Ba) and prepared by the solution-mixing method. The synthesized catalysts were characterized using X-ray powder diffraction, CO-programmed desorption, and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFDirect gas phase epoxidation of propylene to propylene oxide (PO) using O₂ is a challenging problem in catalysis research. Silica-supported ruthenium-copper-based catalysts have been recently reported to be promising for propylene epoxidation. In this work, mesoporous silica supports modified with RuO₂, CuO, and TeO₂ with and without TiO₂ were investigated for propylene epoxidation to PO.
View Article and Find Full Text PDF