Publications by authors named "Dantzer B"

Studying animal social systems requires understanding variations in contact and interaction, influenced by factors like environmental conditions, resource availability, and predation risk. Traditional observational methods have limitations, but advancements in sensor technologies and data analytics provide new opportunities. We developed a wireless wearable sensor system, "Juxta," with features such as modular battery packs and a smartphone app for data collection.

View Article and Find Full Text PDF

Early-life adversity, even when transient, can have lasting effects on individual phenotypes and reduce lifespan across species. If these effects can be mitigated by a high-quality later-life environment, then differences in future resources may explain variable resilience to early-life adversity. Using data from over 1000 wild North American red squirrels, we tested the hypothesis that the costs of early-life adversity for adult lifespan could be offset by later-life food abundance.

View Article and Find Full Text PDF

Understanding the dynamics of animal social systems requires studying variation in contact and interaction, which is influenced by environmental conditions, resource availability, and predation risk, among other factors. Traditional (direct) observational methods have limitations, but advancements in sensor technologies and data analytics provide unprecedented opportunities to study these complex systems in naturalistic environments. Proximity logging and tracking devices, capturing movement, temperature, and social interactions, offer non-invasive means to quantify behavior and develop empirical models of animal social networks.

View Article and Find Full Text PDF

Many studies assume that it is beneficial for individuals of a species to be heavier, or have a higher body condition index (BCI), without accounting for the physiological relevance of variation in the composition of different body tissues. We hypothesized that the relationship between BCI and masses of physiologically important tissues (fat and lean) would be conditional on annual patterns of energy acquisition and expenditure. We studied three species with contrasting ecologies in their respective natural ranges: an obligate hibernator (Columbian ground squirrel, Urocitellus columbianus), a facultative hibernator (black-tailed prairie dog, Cynomys ludovicianus), and a food-caching non-hibernator (North American red squirrel, Tamiasciurus hudsonicus).

View Article and Find Full Text PDF

Gut microbiomes are diverse ecosystems whose drivers of variation remain largely unknown, especially in time and space. We analysed a dataset with over 900 red squirrel (Tamiasciurus hudsonicus) gut microbiome samples to identify the drivers of gut microbiome composition in this territorial rodent. The large-scale spatiotemporal replication in the data analysed was an essential component of understanding the assembly of these microbial communities.

View Article and Find Full Text PDF

Populations at the leading front of a range expansion must rapidly adapt to novel conditions. Increased epigenetic diversity has been hypothesized to facilitate adaptation and population persistence via non-genetic phenotypic variation, especially if there is reduced genetic diversity when populations expand (i.e.

View Article and Find Full Text PDF

Human activities are rapidly changing ecosystems around the world. These changes have widespread implications for the preservation of biodiversity, agricultural productivity, prevalence of zoonotic diseases, and sociopolitical conflict. To understand and improve the predictive capacity for these and other biological phenomena, some scientists are now relying on observatory networks, which are often composed of systems of sensors, teams of field researchers, and databases of abiotic and biotic measurements across multiple temporal and spatial scales.

View Article and Find Full Text PDF

Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment.

View Article and Find Full Text PDF

Mismatches between an organism's phenotype and its environment can result in short-term fitness costs. Here, we show that some phenotypeenvironment mismatch errors can be explained by asymmetrical costs of different types of errors in wild red squirrels. Mothers that mistakenly increased reproductive effort when signals of an upcoming food pulse were absent were more likely to correctly increase effort when a food pulse did occur.

View Article and Find Full Text PDF

While cooperative interactions among kin are a key building block in the societies of group-living species, their importance for species with more variable social environments is unclear. North American red squirrels () defend individual territories in dynamic neighbourhoods and are known to benefit from living among familiar conspecifics, but not relatives. However, kin-directed behaviours may be restricted to specific genealogical relationships or strongly mediated by geographical distance, masking their influence at broader scales.

View Article and Find Full Text PDF

Territories are typically defined as spatially exclusive areas that are defended against conspecifics. Given the spatial nature of territoriality, it is inherently density dependent, but the economics of territoriality also depend on the distribution and abundance of defended resources. Our objectives were to assess the effects of changing population density and food availability on individually based territorial phenotypes.

View Article and Find Full Text PDF

Animal-borne sensors that can record and transmit data ("biologgers") are becoming smaller and more capable at a rapid pace. Biologgers have provided enormous insight into the covert lives of many free-ranging animals by characterizing behavioral motifs, estimating energy expenditure, and tracking movement over vast distances, thereby serving both scientific and conservational endpoints. However, given that biologgers are usually attached externally, access to the brain and neurophysiological data has been largely unexplored outside of the laboratory, limiting our understanding of how the brain adapts to, interacts with, or addresses challenges of the natural world.

View Article and Find Full Text PDF

Evolutionary endocrinology aims to understand how natural selection shapes endocrine systems and the degree to which endocrine systems themselves can induce phenotypic responses to environmental changes. Such responses may be specialized in that they reflect past selection for responsiveness only to those ecological factors that ultimately influence natural selection. Alternatively, endocrine responses may be broad and generalized, allowing organisms to cope with a variety of environmental changes simultaneously.

View Article and Find Full Text PDF

Wind speed can have multifaceted effects on organisms including altering thermoregulation, locomotion, and sensory reception. While forest cover can substantially reduce wind speed at ground level, it is not known if animals living in forests show any behavioural responses to changes in wind speed. Here, we explored how three boreal forest mammals, a predator and two prey, altered their behaviour in response to average daily wind speeds during winter.

View Article and Find Full Text PDF

Animal species vary in whether they provide parental care or the type of care provided, and this variation in parental care among species has been a common focus of comparative studies. However, the proximate causes and ultimate consequences of within-species variation in parental care have been less studied. Most studies about the impacts of within-species variation in parental care on parental fitness have been in primates, whereas studies in laboratory rodents have been invaluable for understanding what causes inter-individual variation in parental care and its influence on offspring characteristics.

View Article and Find Full Text PDF

Animals cope with environmental perturbations through the stress response, a set of behavioural and physiological responses aimed to maintain and/or return to homeostasis and enhance fitness. Vertebrate neuroendocrine axis activation in response to environmental stressors can result in the secretion of glucocorticoids (GCs), whose acute increases may be adaptive, while chronic elevation may be detrimental. Invasive grey squirrels () act as a stressor eliciting elevation of GCs in native red squirrels ().

View Article and Find Full Text PDF

The effect of the social environment on individual state or condition has largely focused on glucocorticoid levels (GCs). As metabolic hormones whose production can be influenced by nutritional, physical, or psychosocial stressors, GCs are a valuable (though singular) measure that may reflect the degree of "stress" experienced by an individual. Most work to date has focused on how social rank influences GCs in group-living species or how predation risk influences GCs in prey.

View Article and Find Full Text PDF

The gut microbiome impacts host health and fitness, in part through the diversification of gut metabolic function and pathogen protection. Elevations in glucocorticoids (GCs) appear to reduce gut microbiome diversity in experimental studies, suggesting that a loss of microbial diversity may be a negative consequence of increased GCs. However, given that ecological factors like food availability and population density may independently influence both GCs and microbial diversity, understanding how these factors structure the GC-microbiome relationship is crucial to interpreting its significance in wild populations.

View Article and Find Full Text PDF

Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community.

View Article and Find Full Text PDF
Article Synopsis
  • Free-living animals respond to environmental stressors through specific physiological and behavioral adaptations, categorized into proactive or reactive coping styles.
  • When studying Eurasian red squirrels, researchers expected to see a link between personality traits and stress response, hypothesizing that these relationships would change in areas invaded by Eastern grey squirrels.
  • The findings revealed that while personality traits correlated in natural populations, indicating a behavioral syndrome, this association was disrupted in the presence of the invasive species, showing that human-induced changes affect native behaviors without altering their coping styles.
View Article and Find Full Text PDF

When resources are limited, mean fitness is constrained and competition can cause genes and phenotypes to enhance an individual's own fitness while reducing the fitness of their competitors. Negative social effects on fitness have the potential to constrain adaptation, but the interplay between ecological opportunity and social constraints on adaptation remains poorly studied in nature. Here, we tested for evidence of phenotypic social effects on annual fitness (survival and reproductive success) in a long-term study of wild North American red squirrels (Tamiasciurus hudsonicus) under conditions of both resource limitation and super-abundant food resources.

View Article and Find Full Text PDF
Article Synopsis
  • - Environmental change and biodiversity loss present significant challenges for conservationists, emphasizing the need for strong scientific evidence to guide effective decision-making.
  • - Conservation Physiology offers a framework to understand population declines, predict environmental responses, and test conservation strategies across various species and ecosystems.
  • - The text outlines 10 priority research themes with 100 specific questions that aim to address key conservation issues, such as adaptation, human-wildlife interactions, and pollution, ultimately to enhance the management of biological resources.
View Article and Find Full Text PDF

As a response to environmental cues, maternal glucocorticoids (GCs) may trigger adaptive developmental plasticity in the physiology and behavior of offspring. In North American red squirrels (Tamiasciurus hudsonicus), mothers exhibit increased GCs when conspecific density is elevated, and selection favors more aggressive and perhaps more active mothers under these conditions. We tested the hypothesis that elevated maternal GCs cause shifts in offspring behavior that may prepare them for high-density conditions.

View Article and Find Full Text PDF

One of the outstanding questions in evolutionary biology is the extent to which mutually beneficial interactions and kin selection can facilitate the evolution of cooperation by mitigating conflict between interacting organisms. The indirect fitness benefits gained from associating with kin are an important pathway to conflict resolution, but conflict can also be resolved if individuals gain direct benefits from cooperating with one another (e.g.

View Article and Find Full Text PDF