Objective: The aim of this study was to evaluate transfer learning combined with various convolutional neural networks (TL-CNNs) in predicting isocitrate dehydrogenase 1 ( IDH1 ) status of grade II/III gliomas.
Methods: Grade II/III glioma patients diagnosed at the Tangdu Hospital (August 2009 to May 2017) were retrospectively enrolled, including 54 patients with IDH1 mutant and 56 patients with wild-type IDH1 . Convolutional neural networks, AlexNet, GoogLeNet, ResNet, and VGGNet were fine-tuned with T2-weighted imaging (T2WI), fluid attenuation inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (T1CE) images.