Publications by authors named "Dansokho C"

Article Synopsis
  • - The study aimed to detect and measure mutant huntingtin (mHTT) levels in tear fluid from individuals with Huntington's disease (HD), a genetic neurodegenerative disorder.
  • - Researchers recruited 53 participants (20 manifest HD patients, 13 premanifest carriers, and 20 controls) and found significantly higher levels of mHTT in tears from HD patients compared to controls, with established cutoff values for diagnosis.
  • - The findings suggest that measuring mHTT in tear fluid could serve as an early, noninvasive method for diagnosing HD and monitoring disease progression, making it useful for clinical trials and routine diagnostics.
View Article and Find Full Text PDF

Background: Increasing evidence supports a key role for peripheral immune processes in the pathophysiology of Alzheimer's disease (AD), highlighting an intricate interplay between brain resident glial cells and both innate and adaptive peripheral immune effectors. We previously showed that regulatory T cells (Tregs) have a beneficial impact on disease progression in AD-like pathology, notably by modulating the microglial response associated with Aβ deposits in a mouse model of amyloid pathology. Besides microglia, reactive astrocytes also play a critical role in neuroinflammatory processes associated with AD.

View Article and Find Full Text PDF

Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder causing memory loss, language problems and behavioural disturbances. AD is associated with the accumulation of fibrillar amyloid-β (Aβ) and the formation of neurofibrillary tau tangles. Fibrillar Aβ itself represents a danger-associated molecular pattern, which is recognized by specific microglial receptors.

View Article and Find Full Text PDF

Neuroinflammatory responses in Alzheimer's disease (AD) are complex and not fully understood. They involve various cellular and molecular players and associate interaction between the central nervous system (CNS) and the periphery. Amyloid peptides within the senile plaques and abnormally phosphorylated tau in neurofibrillary tangles are able to initiate inflammatory responses, in brain of AD patients and in mouse models of this disease.

View Article and Find Full Text PDF

Over the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators.

View Article and Find Full Text PDF

Recent studies highlight the implication of innate and adaptive immunity in the pathophysiology of Alzheimer's disease, and foster immunotherapy as a promising strategy for its treatment. Vaccines targeting amyloid-β peptide provided encouraging results in mouse models, but severe side effects attributed to T cell responses in the first clinical trial AN1792 underlined the need for better understanding adaptive immunity in Alzheimer's disease. We previously showed that regulatory T cells critically control amyloid-β-specific CD4(+) T cell responses in both physiological and pathological settings.

View Article and Find Full Text PDF

Background: Active immunization against Aβ was reported to have a therapeutic effect in murine models of Alzheimer's disease. Clinical Aβ vaccination trial AN1792 was interrupted due to the development in 6 % of the patients of meningoencephalitis likely involving pro-inflammatory CD4(+) T cells. However, the potential implication of auto-aggressive anti-Aβ CD8(+) T cells has been poorly investigated.

View Article and Find Full Text PDF