IEEE Int Symp Parallel Distrib Process Workshops Phd Forum
May 2020
The productivity of computational biologists is limited by the speed of their workflows and subsequent overall job throughput. Because most biomedical researchers are focused on better understanding scientific phenomena rather than developing and optimizing code, a computing and data system implemented in an adventitious and/or non-optimized manner can impede the progress of scientific discovery. In our experience, most computational, life-science applications do not generally leverage the full capabilities of high-performance computing, so tuning a system for these applications is especially critical.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2010
A review of theoretical calculations of black-body radiation (BBR) shifts in various systems of interest to atomic clock research is presented. Calculations for monovalent systems, such as Ca(+), Sr(+), and Rb are carried out using a relativistic all-order single-double method, where all single and double excitations of the Dirac-Fock wave function are included to all orders of perturbation theory. A recently developed method for accurate calculations of BBR shifts in divalent atoms such as Sr is discussed.
View Article and Find Full Text PDF