Publications by authors named "Dansako H"

Immune checkpoint inhibitors (ICIs) exert clinical efficacy against various types of cancers by reinvigorating exhausted CD8 T cells that can expand and directly attack cancer cells (cancer-specific T cells) among tumor-infiltrating lymphocytes (TILs). Although some reports have identified somatic mutations in TILs, their effect on antitumor immunity remains unclear. In this study, we successfully established 18 cancer-specific T cell clones, which have an exhaustion phenotype, from the TILs of four patients with melanoma.

View Article and Find Full Text PDF

Immune checkpoint inhibitors exert clinical efficacy against various types of cancer through reinvigoration of exhausted CD8 T cells that attack cancer cells directly in the tumor microenvironment (TME). Using single-cell sequencing and mouse models, we show that CXCL13, highly expressed in tumor-infiltrating exhausted CD8 T cells, induces CD4 follicular helper T (T) cell infiltration, contributing to anti-tumor immunity. Furthermore, a part of the T cells in the TME exhibits cytotoxicity and directly attacks major histocompatibility complex-II-expressing tumors.

View Article and Find Full Text PDF

During the replication of viral genomes, RNA viruses produce double-stranded RNA (dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as viral replication intermediates. Recognition of viral dsRNA by host pattern recognition receptors - such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like receptor 3 - triggers the production of interferon (IFN)-β via the activation of IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form homodimers for the efficient activation of a downstream signalling pathway in host cells.

View Article and Find Full Text PDF

Intracranial metastases are common in nonsmall-cell lung cancer (NSCLC) patients, whose prognosis is very poor. In addition, intracranial progression is common during systemic treatments due to the inability to penetrate central nervous system (CNS) barriers, whereas the intracranial effects of cancer immunotherapies remain unclear. We analyzed clinical data to evaluate the frequency of intracranial progression in advanced NSCLC patients treated with PD-1 blockade therapies compared with those treated without PD-1 blockade therapies, and found that the frequency of intracranial progression in advanced NSCLC patients treated with PD-1 blockade therapies was significantly lower than that in patients treated with cytotoxic chemotherapies.

View Article and Find Full Text PDF
Article Synopsis
  • * In experiments with mouse models, the combination of H₂O₂ and RT led to a significant increase in immune cells, particularly matured dendritic cells and CD8 T cells, in the non-treated tumor sites, indicating a boost in antitumor immunity.
  • * Additionally, blocking the PD-1 receptor enhanced the antitumor effect seen with the H₂O₂/RT combination, suggesting potential for this treatment strategy in cancer immunotherapy, especially for advanced cases
View Article and Find Full Text PDF
Article Synopsis
  • Combination therapy using anti-CTLA-4 and anti-PD-1 monoclonal antibodies has improved cancer treatment outcomes but over half of kidney cancer patients still do not respond to these treatments.
  • Regulatory T cells (Treg cells), which suppress the immune response against tumors, play a significant role in this resistance due to their expression of CTLA-4, an important immunosuppressive molecule.
  • Research indicates that while CTLA-4 blockade can enhance certain signaling pathways in Treg cells, true effectiveness in promoting tumor regression may require reducing Treg cells' presence in the tumor environment.
View Article and Find Full Text PDF

Hepatitis B virus (HBV) is a human hepatotropic pathogen causing hepatocellular carcinoma. We recently obtained HBV-susceptible immortalized human hepatocyte NKNT-3 by exogenously expressing NTCP and its derived cell clones, #28.3.

View Article and Find Full Text PDF

We previously found that N-89 and its derivative, N-251, which are being developed as antimalarial compounds, showed multiple antiviral activities including hepatitis C virus (HCV). In this study, we focused on the most characterized anti-HCV activity of N-89(N-251) to clarify their antiviral mechanisms. We first prepared cells exhibiting resistance to N-89(N-251) than the parental cells by serial treatment of HCV-RNA-replicating parental cells with N-89(N-251).

View Article and Find Full Text PDF

Glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) is a rate-limiting enzyme catalyzing triglyceride synthesis. Recently, we demonstrated that the anti-viral drug ribavirin (RBV) reduces GPAM expression by downregulating CCAAT/enhancer-binding protein α (C/EBPα). However, the precise mechanisms of GPAM suppression have remained unclear.

View Article and Find Full Text PDF

The most characteristic feature of the hepatitis C virus (HCV) genome in patients with chronic hepatitis C is its remarkable variability and diversity. To better understand this feature, we performed genetic analysis of HCV replicons recovered from two human hepatoma HuH-7-derived cell lines after 1, 3, 5, 7, and 9 years in culture: The cell lines 50-1 and sO harbored HCV 1B-1 and O strain-derived HCV replicons established in 2002 and 2003, respectively. The results revealed that genetic variations in both replicons accumulated in a time-dependent manner at a constant rate despite the maintenance of moderate diversity (less than 1.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infection, which increases the risk of cirrhosis and hepatocellular carcinoma and requires lifelong treatment, has become a major global health problem. However, host factors essential to the HBV life cycle are still unclear, and the development of new drugs is needed. Cells derived from the human hepatoma cell line HepG2 and engineered to overexpress sodium taurocholate cotransporting polypeptide (NTCP: a receptor for HBV), termed HepG2/NTCP cells, are widely used as the cell-based HBV infection and replication systems for HBV research.

View Article and Find Full Text PDF

Recently, we demonstrated that the anti-viral drug ribavirin (RBV) had the ability to suppress lipogenesis through down-regulation of retinoid X receptor α (RXRα) under the control of the intracellular GTP-level and AMP-activated protein kinase-related kinases, especially microtubule affinity regulating kinase 4 (MARK4). RXRα-overexpression attenuated but did not abolish lipogenesis suppression by RBV, implying that additional factor(s) were involved in this suppressive effect. In the present study, we found that the protein level, but not the mRNA level, of CCAAT/enhancer-binding protein α (C/EBPα) was down-regulated by RBV in hepatic cells.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) is a hepatotropic DNA virus causing hepatic diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. To study HBV, human hepatoma HepG2 cells are currently used as an HBV infectious cell culture model worldwide. HepG2 cells exhibit susceptibility to HBV by exogenously expressing sodium taurocholate cotransporting polypeptide (NTCP).

View Article and Find Full Text PDF

Hepatitis B virus (HBV) causes hepatic diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. These diseases are closely associated with persistent HBV infection. To prevent the progression of hepatic diseases, it is thus important to suppress persistent HBV infection.

View Article and Find Full Text PDF

The chemically synthesized endoperoxide compound N-89 and its derivative N-251 were shown to have potent antimalarial activity. We previously demonstrated that N-89 and N-251 potently inhibited the RNA replication of hepatitis C virus (HCV), which belongs to the family. Since antimalarial and anti-HCV mechanisms have not been clarified, we were interested whether N-89 and N-251 possessed the activity against viruses other than HCV.

View Article and Find Full Text PDF

Natural killer (NK) cells through their NK group 2 member D (NKG2D) receptors recognize NKG2D ligands such as UL16-binding proteins (ULBPs) on virus-infected cells and subsequently trigger the host innate immune response. In the present study, we demonstrated that hepatitis C virus (HCV) induced the cell surface expression of ULBP1 in human immortalized hepatocyte PH5CH8 cells and human hepatoma HuH-7 cell-derived RSc cells. Interestingly, NK cell line NK-92 induced cytotoxicity and interferon-γ mRNA expression and subsequently reduced the levels of HCV RNA replication during co-culture with HCV-infected RSc cells.

View Article and Find Full Text PDF

Ribavirin (RBV) has been widely used as an antiviral reagent, specifically for patients with chronic hepatitis C. We previously demonstrated that adenosine kinase, which monophosphorylates RBV into the metabolically active form, is a key determinant for RBV sensitivity against hepatitis C virus RNA replication. However, the precise mechanism of RBV action and whether RBV affects cellular metabolism remain unclear.

View Article and Find Full Text PDF

Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a major global health problem. Recently developed treatments with direct-acting antivirals (DAAs) have largely improved the sustained virologic response rate of patients with chronic hepatitis C. However, this approach is still hindered by its great expense and the problem of drug resistance.

View Article and Find Full Text PDF

Membrane transport probably participates in the lifecycle of hepatitis C virus (HCV). Rab proteins are essential host factors for HCV RNA replication, but these proteins' roles in other steps of the HCV lifecycle are not clear. The tight junction (TJ) plays a key role in HCV infection.

View Article and Find Full Text PDF

The mechanisms of hepatitis C virus (HCV)-associated hepatocarcinogenesis and disease progression are unclear. We previously observed that the expression level of carboxypeptidase B2 (CPB2) gene was remarkably suppressed by persistent HCV RNA replication in human hepatoma cell line Li23- derived cells. The results of the present study demonstrated that the CPB2 expression in patients with chronic hepatitis C was inversely correlated with several risk factors of hepatic fibrosis or steatosis, although ectopic CPB2 expression did not suppress the expression of fibrogenic or lipogenic genes.

View Article and Find Full Text PDF

During viral replication, the innate immune response is induced through the recognition of viral replication intermediates by host factor(s). One of these host factors, cyclic GMP-AMP synthetase (cGAS), was recently reported to be involved in the recognition of viral DNA derived from DNA viruses. However, it is uncertain whether cGAS is involved in the recognition of hepatitis B virus (HBV), which is a hepatotropic DNA virus.

View Article and Find Full Text PDF

Persistent infection with hepatitis C virus (HCV) often causes chronic hepatitis, and then shows a high rate of progression to liver cirrhosis and hepatocellular carcinoma. To clarify the mechanism of the persistent HCV infection is considered to be important for the discovery of new target(s) for the development of anti-HCV strategies. In the present study, we found that the expression level of annexin A1 (ANXA1) in human hepatoma cell line Li23-derived D7 cells was remarkably lower than that in parental Li23 cells, whereas the susceptibility of D7 cells to HCV infection was much higher than that of Li23 cells.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) replication is controlled by liver-enriched transcriptional factors, including forkhead box protein A (FOXA) members. Here, we found that FOXA members are directly and indirectly involved in HBV replication in human hepatic cells. HBV replication was elevated in HuH-7 treated with individual FOXA members-specific siRNA.

View Article and Find Full Text PDF

In the viral reproduction, hepatitis C virus(HCV) produces double-stranded RNA (dsRNA) as a replication intermediate. RIG-I(retinoic acid inducible protein I) recognizes the intracellular HCV dsRNA as a "non self" molecule, and triggers the induction of interferon (IFN)-β and then numerous IFN-stimulated genes(ISGs). On the other hand, one of toll-like receptors, TLR3 also recognizes the extracellular HCV dsRNA, and subsequently triggers the induction of IFN-β and ISGs.

View Article and Find Full Text PDF

Background: Ribavirin (RBV) is a potential partner of interferon-based therapy and recently approved therapy using direct acting antivirals for patients with chronic hepatitis C. However, the precise mechanisms underlying RBV action against hepatitis C virus (HCV) replication are not yet understood. To clarify this point, we attempted to develop RBV-resistant cells from RBV-sensitive HCV RNA-replicating cells.

View Article and Find Full Text PDF