Thermally activated delayed fluorescence (TADF) materials have provided new strategies for time-resolved luminescence imaging (TRLI); however, the development of hydrophilic TADF luminophores for specific imaging in cells remains a substantial challenge. In this study, a mitochondria-induced aggregation strategy for TRLI is proposed with the design and utilization of the hydrophilic TADF luminophore ((10-(1,3-dioxo-2-phenyl-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-9,9-dimethyl-9,10-dihydroacridin-2-yl)methyl)triphenylphosphonium bromide . Using a nonconjugated linker to introduce a triphenylphosphonium (TPP) group into the 6-(9,9-dimethylacridin-10(9)-yl)-2-phenyl-1H-benzo[]isoquinoline-1,3(2)-dione TADF luminophore preserves the TADF emission of .
View Article and Find Full Text PDFIt is a big challenge to develop fluorescent probes for selective detection of DNA with specific sequences in aqueous buffers. We report a new tetraphenylethene-based Zn(2+)-cyclen complex (TPECyZn), and a chemo-sensing ensemble of the Zn complex with phenol red. TPECyZn showed significant fluorescence enhancement upon binding to thymine-rich DNA in HEPES buffers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2014
A series of new amino-functionalized tetraphenylethene (TPE) derivatives were designed and synthesized to study the effect of molecular structures on the detection of nucleic acid. Contrastive studies revealed that the number of binding groups, the length of hydrophobic linking arm and the configuration of TPE molecule all play important roles on the sensitivity of the probes in nucleic acid detection. Z-TPE3 with two binding amino groups, long linking arms, and cis configuration was found to be the most sensitive dye in both solution and gel matrix.
View Article and Find Full Text PDF