Publications by authors named "Danny Marfatia"

Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements.

View Article and Find Full Text PDF

We analyze the energy and zenith angle distributions of the latest two-year IceCube data set of upward-going atmospheric neutrinos to constrain sterile neutrinos at the eV scale in the 3+1 scenario. We find that the parameters favored by a combination of LSND and MiniBooNE data are excluded at more than the 99% C.L.

View Article and Find Full Text PDF

The recent discovery by the Daya-Bay and RENO experiments, that θ(13) is nonzero and relatively large, significantly impacts existing experiments and the planning of future facilities. In many scenarios, the nonzero value of θ(13) implies that θ(23) is likely to be different from π/4. Additionally, large detectors will be sensitive to matter effects on the oscillations of atmospheric neutrinos, making it possible to determine the neutrino mass hierarchy and the octant of θ(23).

View Article and Find Full Text PDF

Using the nonobservance of missing mass events in the leptonic kaon decay K→μX, we place a strong constraint on exotic parity-violating gauge interactions of the right-handed muon. By way of illustration, we apply it to an explanation of the proton size anomaly that invokes such a new force; scenarios in which the gauge boson decays invisibly or is long lived are constrained.

View Article and Find Full Text PDF

A measurement of the Lamb shift in muonic hydrogen yields a charge radius of the proton that is smaller than the CODATA value by about 5 standard deviations. We explore the possibility that new scalar, pseudoscalar, vector, and tensor flavor-conserving nonuniversal interactions may be responsible for the discrepancy. We consider exotic particles that, among leptons, couple preferentially to muons and mediate an attractive nucleon-muon interaction.

View Article and Find Full Text PDF

We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data and with reactor antineutrino data at short and long baselines (from CHOOZ and KamLAND). We find that the survival probability of solar MaVaNs is independent of how the suppression of neutrino mass caused by the acceleron-matter couplings varies with density.

View Article and Find Full Text PDF