Publications by authors named "Danny Mannix"

Time-resolved x-ray diffraction has been used to measure the low-temperature thermal transport properties of a Pt/GdFeO//GdGaO metal/oxide heterostructure relevant to applications in spin caloritronics. A pulsed femtosecond optical signal produces a rapid temperature rise in the Pt layer, followed by heat transport into the GdFeO (GdIG) thin film and the GdGaO (GGG) substrate. The time dependence of x-ray diffraction from the GdIG layer was tracked using an accelerator-based femtosecond x-ray source.

View Article and Find Full Text PDF

Spin electronic devices based on crystalline oxide layers with nanoscale thicknesses involve complex structural and magnetic phenomena, including magnetic domains and the coupling of the magnetism to elastic and plastic crystallographic distortion. The magnetism of buried nanoscale layers has a substantial impact on spincaloritronic devices incorporating garnets and other oxides exhibiting the spin Seebeck effect (SSE). Synchrotron hard x-ray nanobeam diffraction techniques combine structural, elemental, and magnetic sensitivity and allow the magnetic domain configuration and structural distortion to be probed in buried layers simultaneously.

View Article and Find Full Text PDF

We present an ab initio numerical tool to simulate surface resonant X-ray diffraction experiments. The crystal truncation rods and the spectra around a given X-ray absorption edge are calculated at any position of the reciprocal space. Density functional theory is used to determine the resonant scattering factor of an atom within its local environment and to calculate the diffraction peak intensities for surfaces covered with a thin film or with one or several adsorbed layers.

View Article and Find Full Text PDF