Publications by authors named "Danny Letourneau"

Compounds beyond the rule-of-five are generating interest as they expand the molecular toolbox for modulating targets previously considered "undruggable". Macrocyclic peptides are an efficient class of molecules for modulating protein-protein interactions. However, predicting their permeability is difficult as they differ from small molecules.

View Article and Find Full Text PDF

Miz-1 (ZBTB17) is a poly-zinc finger BTB/POZ transcription factor with 12 consecutive C2H2 zinc fingers (ZFs) that binds transcriptional start sites (TSSs) to regulate the expression of genes involved in cell development and proliferation. As of now, it is not known which of the 12 consecutive ZFs are responsible for the recognition of the 24 base pair consensus sequence found at these TSSs. Evidence suggests ZFs 7-12 plays this role.

View Article and Find Full Text PDF

Rab4a is a small GTPase associated with endocytic compartments and a key regulator of early endosomes recycling. Gathering evidence indicates that its expression and activation are required for the development of metastases. Rab4a-intrinsic GTPase properties that control its activity, i.

View Article and Find Full Text PDF

Inhibiting MYC has long been considered unfeasible, although its key role in human cancers makes it a desirable target for therapeutic intervention. One reason for its perceived undruggability was the fear of catastrophic side effects in normal tissues. However, we previously designed a dominant-negative form of MYC called Omomyc and used its conditional transgenic expression to inhibit MYC function both in vitro and in vivo.

View Article and Find Full Text PDF

The use of direct calorimetric methods such as isothermal titration calorimetry for measuring the affinity and specificity of protein-ligand interactions requires large amounts of proteins and ligands. When material is scarce and/or in the absence of calorimeters, thermal Shift Assays (TSA) using Circular Dichroism (CD) or other spectroscopic methods offers an alternative and quantitative method for the determination of apparent or indirect thermodynamical parameters describing the affinity of ligands for proteins. Indeed, the binding constants of ligands (K) and other parameters such as the enthalpy and Gibbs free energy of binding may be estimated from the changes in the stability curves ΔG(T) of a protein in the presence of a ligand.

View Article and Find Full Text PDF

The aminosteroid derivative RM-133 is an effective anticancer molecule for which proof of concept has been achieved in several mouse xenograph models (HL-60, MCF-7, PANC-1 and OVCAR-3). To promote this new family of molecules toward a clinical phase 1 trial, the mechanism of action governing the anticancer properties of the representative candidate RM-133 needs to be characterized. In vitro experiments were first used to determine that RM-133 causes apoptosis in cancer cells.

View Article and Find Full Text PDF

The Gα subunit is classically involved in the signal transduction of G protein-coupled receptors (GPCRs) at the plasma membrane. Recent evidence has revealed noncanonical roles for Gα in endosomal sorting of receptors to lysosomes. However, the mechanism of action of Gα in this sorting step is still poorly characterized.

View Article and Find Full Text PDF

START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research.

View Article and Find Full Text PDF

Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain proteins display diverse expression patterns and cellular localisations. They bind a large variety of lipids and sterols and are involved in lipid metabolism, lipid transfer and cell signalling. The START domain tertiary structure is an α-helix/β-grip fold module of approximately 210 amino acids delimiting an internal cavity forming the binding site.

View Article and Find Full Text PDF

STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations.

View Article and Find Full Text PDF

We present herein a review of our recent results on the characterization of the binding sites of STARD1, STARD5 and STARD6 using NMR and other biophysical techniques. Whereas STARD1 and STARD6 bind cholesterol, no cholesterol binding could be detected for STARD5. However, titration of STARD5 with cholic acid and chenodeoxycholic acid led to specific binding.

View Article and Find Full Text PDF

Steroidogenic acute regulatory-related lipid transfer (START) domain proteins are involved in the nonvesicular intracellular transport of lipids and sterols. The STARD1 (STARD1 and STARD3) and STARD4 subfamilies (STARD4-6) have an internal cavity large enough to accommodate sterols. To provide a deeper understanding on the structural biology of this domain, the binding of sterols to STARD5, a member of the STARD4 subfamily, was monitored.

View Article and Find Full Text PDF

Steroidogenic acute regulatory (StAR)-related lipid transfer proteins possess a START (steroidogenic acute regulatory-related lipid transfer) domain. START domains are conserved protein modules involved in the non-vesicular intracellular transport of lipids and cholesterol in mammals. Fifteen mammalian proteins, divided in five subfamilies, are reported to possess a START domain.

View Article and Find Full Text PDF