Publications by authors named "Danny Brouard"

Background: A life-threatening anaphylactic shock can occur if a patient with undiagnosed immunoglobulin A (IgA) deficiency (i.e., IgA levels <500 ng/mL) receives IgA-containing blood, hence the need for a rapid, point-of-care (POC) method for IgA deficiency screening.

View Article and Find Full Text PDF

Introduction: Early in the COVID-19 pandemic, reagent availability was not uniform, and infrastructure had to be urgently adapted to undertake COVID-19 surveillance.

Methods: Before the validation of centralized testing, two enzyme-linked immunosorbent assays (ELISA) were established independently at two decentralized sites using different reagents and instrumentation. We compared the results of these assays to assess the longitudinal humoral response of SARS-CoV-2-positive (i.

View Article and Find Full Text PDF

Ocular oximetry, in which blood oxygen saturation is evaluated in retinal tissues, is a promising technique for the prevention, diagnosis and management of many diseases and conditions. However, the development of new tools for evaluating oxygen saturation in the eye fundus has often been limited by the lack of reference tools or techniques for such measurements. In this study, we describe a two-step validation method.

View Article and Find Full Text PDF

Technological innovations and quality control processes within blood supply organizations have significantly improved blood safety for both donors and recipients. Nevertheless, the risk of transfusion-transmitted infection remains non-negligible. Applying a nanoparticular, antibacterial coating at the surface of medical devices is a promising strategy to prevent the spread of infections.

View Article and Find Full Text PDF

SARS-CoV-2 variants of concern (VOCs) have emerged worldwide, with implications on the spread of the pandemic. Characterizing the cross-reactivity of antibodies against these VOCs is necessary to understand the humoral response of non-hospitalized individuals previously infected with SARS-CoV-2, a population that remains understudied. Thirty-two SARS-CoV-2-positive (PCR-confirmed) and non-hospitalized Canadian adults were enrolled 14-21 days post-diagnosis in 2020, before the emergence of the B.

View Article and Find Full Text PDF

We report on the development of surface plasmon resonance (SPR) sensors and matching ELISAs for the detection of nucleocapsid and spike antibodies specific against the novel coronavirus 2019 (SARS-CoV-2) in human serum, plasma and dried blood spots (DBS). When exposed to SARS-CoV-2 or a vaccine against SARS-CoV-2, the immune system responds by expressing antibodies at levels that can be detected and monitored to identify the fraction of the population potentially immunized against SARS-CoV-2 and support efforts to deploy a vaccine strategically. A SPR sensor coated with a peptide monolayer and functionalized with various sources of SARS-CoV-2 recombinant proteins expressed in different cell lines detected human anti-SARS-CoV-2 IgG antibodies in clinical samples.

View Article and Find Full Text PDF

Background: Timely and safe distribution of quality blood products is a major challenge faced by blood banks around the world. Our primary objective was to determine if simulated blood product delivery to an urban trauma center would be more rapidly achieved by unmanned aerial vehicle (UAV) than by ground transportation. A secondary objective was to determine the feasibility of maintaining simulated blood product temperatures within a targeted range.

View Article and Find Full Text PDF

Bacteriological testing of donor human milk is mostly done both before and after pasteurization to control contamination in the end-product and meet the microbiological standards. Although the plate count method represents a reliable and sensitive technique and is considered the gold standard for bacteriological testing, it is recognized for being time-consuming and requiring qualified personnel. Recently, faster testing technologies, mostly geared toward the food industry, have been developed.

View Article and Find Full Text PDF

Background: Great deformability allows red blood cells (RBCs) to flow through narrow capillaries in tissues. A number of microfluidic devices with capillary-like microchannels have been developed to monitor storage-related impairment of RBC deformability during blood banking operations. This proof-of-concept study describes a new method to standardize and improve reproducibility of the RBC deformability measurements using one of these devices.

View Article and Find Full Text PDF

Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor.

View Article and Find Full Text PDF

This study describes the preparation and characterization of a DNA sensing architecture combining the molecular recognition capabilities of a cationic conjugated polymer transducer with highly fluorescent core-shell nanoparticles (NPs). The very structure of the probe-labeled NPs and the polymer-induced formation of NP aggregates maximize the proximity between the polymer donor and acceptor NPs that is required for optimal resonant energy transfer. Each hybridization event is signaled by a potentially large number of excited reporters following the efficient plasmon-enhanced energy transfer between target-activated polymer transducer and fluorophores located in the self-assembled core-shell aggregates, resulting in direct molecular detection of target nucleic acids at femtomolar concentrations.

View Article and Find Full Text PDF

Zirconium and silicon sol-gels were investigated as solid materials for trace elemental analysis of pelletized solid samples by laser ablation and laser-enhanced ionization. The highly homogeneous dispersion of an internal standard spiked in the solid material obtained with the sol-gel formation process leads to a significant improvement in signal repeatability and to an increase in the precision of measurements through better correction of variations in the laser ablation rate. Signal repeatability values of 5-8% RSD were obtained for Pb in NIST 1632c Bituminous Coal sample pellets prepared using both sol-gels, as compared to 9-21% for graphite-based sample pellets.

View Article and Find Full Text PDF