Publications by authors named "Danni Lei"

At present, graphite is a widely used anode material in commercial lithium-ion batteries for its low cost, but the large volume expansion (about 10%) after fully lithiated makes the material prone to cracking and even surface stripping in the cycle. Therefore, the development of zero-strain anode materials (volume change <1%) is of great significance. LiAlO is a zero-strain insertion anode material with a high theoretical specific capacity.

View Article and Find Full Text PDF

Electrolyte engineering is a feasible strategy to realize high energy density lithium metal batteries. However, stabilizing both lithium metal anodes and nickel-rich layered cathodes is extremely challenging. To break through this bottleneck, a dual-additives electrolyte containing fluoroethylene carbonate (10 vol.

View Article and Find Full Text PDF

Constructing active heterointerfaces is powerful to enhance the electrochemical performances of transition metal dichalcogenides, but the interface density regulation remains a huge challenge. Herein, MoO /MoS heterogeneous nanorods are encapsulated in nitrogen and sulfur co-doped carbon matrix (MoO /MoS @NSC) by controllable sulfidation. MoO and MoS are coupled intimately at atomic level, forming the MoO /MoS heterointerfaces with different distribution density.

View Article and Find Full Text PDF

Composite gel polymer electrolyte (CGPE), derived from ceramic fillers has emerged as one of the most promising candidates to improve the safety and cycling stability of lithium metal batteries. However, the poor interface compatibility between the ceramic phase and polymer phase in CGPE severely deteriorates lithium-ion pathways and cell performances. In this work, a fluorescent ceramic nanowire network that can palliate the energy barrier of photoinitiators and contribute to preferential nucleation and growth of polymer monomers is developed, thus inducing polymer segment orderly arrangement and tightly combination.

View Article and Find Full Text PDF

The insertion type materials are the most important anode materials for lithium-ion batteries, but their insufficient capacity is the bottleneck of practical application. Here, LiAl O nanowires with high theoretical capacity and Li-ions diffusion coefficient are prepared and studied as an insertion anode material, which exhibits zero-strain properties upon electrochemical cycling. However, the poor electronic conductivity of LiAl O definitely sacrifices the capacity and limits the rate performance.

View Article and Find Full Text PDF

Engineering the formulation of non-aqueous liquid electrolytes is a viable strategy to produce high-energy lithium metal batteries. However, when the lithium metal anode is combined with a Ni-rich layered cathode, the (electro)chemical stability of both electrodes could be compromised. To circumvent this issue, we report a combination of aluminum ethoxide (0.

View Article and Find Full Text PDF

Sodium metal batteries have potentially high energy densities, but severe sodium-dendrite growth and side reactions prevent their practical applications, especially at high temperatures. Herein, we design an inorganic ionic conductor/gel polymer electrolyte composite, where uniformly cross-linked beta alumina nanowires are compactly coated by a poly(vinylidene fluoride-co-hexafluoropropylene)-based gel polymer electrolyte through their strong molecular interactions. These  beta alumina nanowires combined with the gel polymer layer create dense and homogeneous solid-liquid hybrid sodium-ion transportation channels through and along the nanowires, which promote uniform sodium deposition and formation of a stable and flat solid electrolyte interface on the sodium metal anode.

View Article and Find Full Text PDF

Designing composite structures of active materials is critical for high-performance lithium-ion batteries, as it determines the reversibility of lithium-ion insertion and extraction of the electrodes. The VO anode has a high specific capacity but presents poor cycling stability due to a large volume change. Herein, a novel C@VO-LiTiO composite with ultrastable cycling stability is constructed.

View Article and Find Full Text PDF

Porous current collectors are conducive to enhance the property of Li metal anode. Unfortunately, congestion in diffusion path during plating process damages the effects of current collectors. Herein, we developed a 3D Cu skeleton with open micrometer-sized pores by NaCl-assisted powder-sintering method.

View Article and Find Full Text PDF

One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front.

View Article and Find Full Text PDF

Phosphorus (P) is an abundant element that exhibits one of the highest gravimetric and volumetric capacities for Li storage, making it a potentially attractive anode material for high capacity Li-ion batteries. However, while phosphorus carbon composite anodes have been previously explored, the influence of the inactive materials on electrode cycle performance is still poorly understood. Here, we report and explain the significant impacts of polymer binder chemistry, carbon conductive additives, and an under-layer between the Al current collector and ball milled P electrodes on cell stability.

View Article and Find Full Text PDF

We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density), which exceed that of commercial Ni-Fe cells by nearly 1 order of magnitude at comparable current densities. These cells also showed the lack of any "activation", typical in commercial batteries, where low initial capacity slowly increases during the initial 20-50 cycles.

View Article and Find Full Text PDF

SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C.

View Article and Find Full Text PDF

Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g(-1)) at a current density of 2 A g(-1), high-power density (11.

View Article and Find Full Text PDF

In this report, we present a hybrid structure involving a small quantity of Co element uniformly deposited on porous SnO(2) spheres as stable and high capacity anode materials for lithium-ion batteries. Specifically, Co element deposited on SnO(2) nanomaterials exhibited an exceptional reversible capacity of 810 mA h g(-1) after 50 cycles which is higher than the pure SnO(2) electrode. Based on the experiments results, a possible mechanism for the change of this structure during lithium ion insertion/extraction was proposed.

View Article and Find Full Text PDF

α-Fe(2)O(3) nanowall arrays (NWAs) were grown directly on Ni foam by a facile hydrothermal method. Based on time-dependent experiment results, a possible formation mechanism for this structure was proposed. The as-prepared α-Fe(2)O(3) samples have an open network structure constituted of interconnected nanowalls and can be directly used as integrated electrodes for lithium-ion batteries (LIBs).

View Article and Find Full Text PDF

Three dimensional (3D) mesoporous Cu(2)SnS(3) spheres composed of nanoparticles were synthesized by a simple solvothermal route. As anode materials for lithium-ion batteries, they delivered remarkably enhanced cycling performances. This could be attributed to the 3D mesoporous structure which may be propitious to the accommodation of volume expansion.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmgaka92j0113if8ujf9hjthgkop8tfis): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once