Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug.
View Article and Find Full Text PDFThe use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture.
View Article and Find Full Text PDFDiarrheal diseases are still a significant problem for humankind, causing approximately half a million deaths annually. To cause diarrhea, enteric bacterial pathogens must first colonize the gut, which is a niche occupied by the normal bacterial microbiota. Therefore, the ability of pathogenic bacteria to inhibit the growth of other bacteria can facilitate the colonization process.
View Article and Find Full Text PDFNon-viral DNA donor template has been widely used for targeted genomic integration by homologous recombination (HR). This process has become more efficient with RNA guided endonuclease editor system such as CRISPR/Cas9. Circular single stranded DNA (cssDNA) has been harnessed previously as a genome engineering catalyst (GATALYST) for efficient and safe targeted gene knock-in.
View Article and Find Full Text PDFUnlabelled: Non-viral DNA donor template has been widely used for targeted genomic integration by homologous recombination (HR). This process has become more efficient with RNA guided endonuclease editor system such as CRISPR/Cas9. Circular single stranded DNA (cssDNA) has been harnessed previously as a g enome engineering c atalyst (GATALYST) for efficient and safe targeted gene knock-in.
View Article and Find Full Text PDFWine is a complex beverage, comprising hundreds of metabolites produced through the action of yeasts and bacteria in fermenting grape must. Commercially, there is now a growing trend away from using wine yeast (Saccharomyces) starter cultures, toward the historic practice of uninoculated or "wild" fermentation, where the yeasts and bacteria associated with the grapes and/or winery perform the fermentation. It is the varied metabolic contributions of these numerous non-Saccharomyces species that are thought to impart complexity and desirable taste and aroma attributes to wild ferments in comparison to their inoculated counterparts.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
March 2017
It has been proposed that humans possess an automatic system to represent mental states ('implicit mentalizing'). The existence of an implicit mentalizing system has generated considerable debate however, centered on the ability of various experimental paradigms to demonstrate unambiguously such mentalizing. Evidence for implicit mentalizing has previously been provided by the 'dot perspective task,' where participants are slower to verify the number of dots they can see when an avatar can see a different number of dots.
View Article and Find Full Text PDFMembers of the genus Hanseniaspora represent a significant proportion of the normal flora of grape berries and play a significant role in wine fermentation. Here, we present genome sequences for three species of Hanseniaspora, H. opuntiae, H.
View Article and Find Full Text PDFBackground: Raspberry ketone is the primary aroma compound found in raspberries and naturally derived raspberry ketone is a valuable flavoring agent. The economic incentives for the production of raspberry ketone, combined with the very poor yields from plant tissue, therefore make this compound an excellent target for heterologous production in synthetically engineered microbial strains.
Methods: A de novo pathway for the production of raspberry ketone was assembled using four heterologous genes, encoding phenylalanine/tyrosine ammonia lyase, cinnamate-4-hydroxlase, coumarate-CoA ligase and benzalacetone synthase, in an industrial strain of Saccharomyces cerevisiae.