Large blocks of tandemly repeated DNAs-satellite DNAs (satDNAs)-play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated; however, their misregulation is associated with genomic instability and human diseases. We use the germline as a model to study the regulation of satDNA transcription and chromatin.
View Article and Find Full Text PDFSatellite DNAs (satDNAs) are among the most dynamically evolving components of eukaryotic genomes and play important roles in genome regulation, genome evolution, and speciation. Despite their abundance and functional impact, we know little about the evolutionary dynamics and molecular mechanisms that shape satDNA distributions in genomes. Here, we use high-quality genome assemblies to study the evolutionary dynamics of two complex satDNAs, Rsp-like and 1.
View Article and Find Full Text PDFHighly repetitive satellite DNA (satDNA) repeats are found in most eukaryotic genomes. SatDNAs are rapidly evolving and have roles in genome stability and chromosome segregation. Their repetitive nature poses a challenge for genome assembly and makes progress on the detailed study of satDNA structure difficult.
View Article and Find Full Text PDFMicrobiol Spectr
April 2015
R2 elements are sequence specific non-LTR retrotransposons that exclusively insert in the 28S rRNA genes of animals. R2s encode an endonuclease that cleaves the insertion site and a reverse transcriptase that uses the cleaved DNA to prime reverse transcription of the R2 transcript, a process termed target primed reverse transcription. Additional unusual properties of the reverse transcriptase as well as DNA and RNA binding domains of the R2 encoded protein have been characterized.
View Article and Find Full Text PDFR2 is an extensively investigated non-LTR retrotransposon that specifically inserts into the 28S rRNA gene sequences of a wide range of metazoans, disrupting its functionality. During R2 integration, first strand synthesis can be incomplete so that 5' end deleted copies are occasionally inserted. While active R2 copies repopulate the locus by retrotransposing, the non-functional truncated elements should frequently be eliminated by molecular drive processes leading to the concerted evolution of the rDNA array(s).
View Article and Find Full Text PDFR2 is a non-long terminal repeat retrotransposon that inserts site-specifically in the tandem 28S rRNA genes of many animals. Previously, R2 RNA from various species of Drosophila was shown to self-cleave from the 28S rRNA/R2 co-transcript by a hepatitis D virus (HDV)-like ribozyme encoded at its 5' end. RNA cleavage was at the precise 5' junction of the element with the 28S gene.
View Article and Find Full Text PDFBackground: R2 is a non-long terminal repeat (non-LTR) retrotransposable element that inserts site specifically into the 28S genes of the ribosomal (r)RNA gene loci. Encoded at the 5' end is a ribozyme that generates the precise 5' end by self-cleavage of a 28S gene cotranscript. Sequences at the 3' end are necessary for the R2 protein to bind RNA and initiate the target primed reverse transcription (TPRT) reaction.
View Article and Find Full Text PDFAnalysis of the R2 retrotransposons from multiple silkmoth and fruitfly species have revealed three segments that contain conserved RNA secondary structures. These conserved structures play important roles in the propagation of the R2 element, including R2 RNA processing and transposon integration into the host genome as well as a likely role in translation. Two of the structured regions comprise protein binding sites: one is located in the 3' UTR and the other is in the 5' UTR close to the putative start of the R2 open reading frame (ORF).
View Article and Find Full Text PDFThe non-long terminal repeat (non-LTR) retrotransposon R2 is inserted into the 28S rRNA genes of many animals. Expression of the element appears to be by cotranscription with the rRNA gene unit. We show here that processing of the rRNA cotranscript at the 5' end of the R2 element in Drosophila simulans is rapid and utilizes an unexpected mechanism.
View Article and Find Full Text PDFR2 retrotransposable elements exclusively insert into a conserved region of the tandemly organized 28S rRNA genes. Despite inactivating a subset of these genes, R2 elements have persisted in the ribosomal DNA (rDNA) loci of insects for hundreds of millions of years. Controlling R2 proliferation was addressed in this study using lines of Drosophila simulans previously shown to have either active or inactive R2 retrotransposition.
View Article and Find Full Text PDFEvolution of the tandemly repeated ribosomal RNA (rRNA) genes is intriguing because in each species all units within the array are highly uniform in sequence but that sequence differs between species. In this review we summarize the origins of the current models to explain this process of concerted evolution, emphasizing early studies of recombination in yeast and more recent studies in Drosophila and mammalian systems. These studies suggest that unequal crossover is the major driving force in the evolution of the rRNA genes with sister chromatid exchange occurring more often than exchange between homologs.
View Article and Find Full Text PDFR2 retrotransposons insert into the rRNA-encoding units (rDNA units) that form the nucleoli of insects. We have utilized an R2 integration system in Drosophila melanogaster to study transcription of foreign sequences integrated into the R2 target site of the 28S rRNA genes. The exogenous sequences were cotranscribed at dramatically different levels which closely paralleled the level of transcription of the endogenous R1 and R2 elements.
View Article and Find Full Text PDF