Publications by authors named "Danna B Zimmer"

Neuroinflammation following traumatic brain injury (TBI) is increasingly recognized to contribute to chronic tissue loss and neurologic dysfunction. Circulating levels of S100B increase after TBI and have been used as a biomarker. S100B is produced by activated astrocytes and can promote microglial activation; signaling by S100B through interaction with the multiligand advanced glycation end product-specific receptor (AGER) has been implicated in brain injury and microglial activation during chronic neurodegeneration.

View Article and Find Full Text PDF

In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature.

View Article and Find Full Text PDF

The contribution of the Ca(2+) sensor S100A1 to in vivo Alzheimer's disease (AD) pathobiology has not been elucidated although S100A1 regulates numerous cellular processes linked to AD. This study uses genetic ablation to ascertain the effects of S100A1 on neuroinflammation, beta-amyloid (Aβ) plaque deposition and Akt activity in the PSAPP AD mouse model. PSAPP/S100A1(-/-) mice exhibited decreases in astrocytosis (GFAP burden), microgliosis (Iba1 burden) and plaque load/number when compared to PSAPP/S100A1(+/+) mice at six and twelve months of age.

View Article and Find Full Text PDF

Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity.

View Article and Find Full Text PDF

S100 proteins are markers for numerous cancers, and in many cases high S100 protein levels are a prognostic indicator for poor survival. One such case is S100B, which is overproduced in a very large percentage of malignant melanoma cases. Elevated S100B protein was more recently validated to have causative effects towards cancer progression via down-regulating the tumor suppressor protein, p53.

View Article and Find Full Text PDF

The S100s are a large group of Ca(2+) sensors found exclusively in vertebrates. Transcriptomic and genomic data from the major radiations of mammals were used to derive the evolution of the mammalian S100s genes. In human and mouse, S100s and S100 fused-type proteins are in a separate clade from other Ca(2+) sensor proteins, indicating that an ancient bifurcation between these two gene lineages has occurred.

View Article and Find Full Text PDF

Background: Numerous studies have reported that increased expression of S100B, an intracellular Ca2+ receptor protein and secreted neuropeptide, exacerbates Alzheimer's disease (AD) pathology. However, the ability of S100B inhibitors to prevent/reverse AD histopathology remains controversial. This study examines the effect of S100B ablation on in vivo plaque load, gliosis and dystrophic neurons.

View Article and Find Full Text PDF

S100B is a calcium signaling protein that is a member of the S100 protein family. An important feature of S100B and most other S100 proteins (S100s) is that they often bind Ca(2+) ions relatively weakly in the absence of a protein target; upon binding their target proteins, Ca(2+)-binding then increases by as much as from 200- to 400-fold. This manuscript reviews the structural basis and physiological significance of increased Ca(2+)-binding affinity in the presence of protein targets.

View Article and Find Full Text PDF

The role of S100A1 in skeletal muscle is just beginning to be elucidated. We have previously shown that skeletal muscle fibers from S100A1 knockout (KO) mice exhibit decreased action potential (AP)-evoked Ca(2+) transients, and that S100A1 binds competitively with calmodulin to a canonical S100 binding sequence within the calmodulin-binding domain of the skeletal muscle ryanodine receptor. Using voltage clamped fibers, we found that Ca(2+) release was suppressed at all test membrane potentials in S100A1(-/-) fibers.

View Article and Find Full Text PDF

S100A1 is a member of the S100 family of calcium-binding proteins. As with most S100 proteins, S100A1 undergoes a large conformational change upon binding calcium as necessary to interact with numerous protein targets. Targets of S100A1 include proteins involved in calcium signaling (ryanidine receptors 1 & 2, Serca2a, phopholamban), neurotransmitter release (synapsins I & II), cytoskeletal and filament associated proteins (CapZ, microtubules, intermediate filaments, tau, mocrofilaments, desmin, tubulin, F-actin, titin, and the glial fibrillary acidic protein GFAP), transcription factors and their regulators (e.

View Article and Find Full Text PDF

S100A1 is a Ca(2+) binding protein that modulates excitation-contraction (EC) coupling in skeletal and cardiac muscle. S100A1 competes with calmodulin for binding to the skeletal muscle SR Ca(2+) release channel (the ryanodine receptor type 1, RyR1) at a site that also interacts with the C-terminal tail of the voltage sensor of EC coupling, the dihydropyridine receptor. Ablation of S100A1 leads to delayed and decreased action potential evoked Ca(2+) transients, possibly linked to altered voltage sensor activation.

View Article and Find Full Text PDF

In the preceding paper, we reported that flexor digitorum brevis (FDB) muscle fibres from S100A1 knock-out (KO) mice exhibit a selective suppression of the delayed, steeply voltage-dependent component of intra-membrane charge movement current termed Q(gamma). Here, we use 50 microm of the Ca(2+) indicator fluo-4 in the whole cell patch clamp pipette, in addition to 20 mM EGTA and other constituents included for the charge movement studies, and calculate the SR Ca(2+) release flux from the fluo-4 signals during voltage clamp depolarizations. Ca(2+) release flux is decreased in amplitude by the same fraction at all voltages in fibres from S100A1 KO mice compared to fibres from wild-type (WT) littermates, but unchanged in time course at each pulse membrane potential.

View Article and Find Full Text PDF

As is typical for S100-target protein interactions, a Ca 2+-dependent conformational change in S100A1 is required to bind to a 12-residue peptide (TRTK12) derived from the actin-capping protein CapZ. In addition, the Ca 2+-binding affinity of S100A1 is found to be tightened (greater than threefold) when TRTK12 is bound. To examine the biophysical basis for these observations, we determined the solution NMR structure of TRTK12 in a complex with Ca 2+-loaded S100A1.

View Article and Find Full Text PDF

In heart and skeletal muscle an S100 protein family member, S100A1, binds to the ryanodine receptor (RyR) and promotes Ca(2+) release. Using competition binding assays, we further characterized this system in skeletal muscle and showed that Ca(2+)-S100A1 competes with Ca(2+)-calmodulin (CaM) for the same binding site on RyR1. In addition, the NMR structure was determined for Ca(2+)-S100A1 bound to a peptide derived from this CaM/S100A1 binding domain, a region conserved in RyR1 and RyR2 and termed RyRP12 (residues 3616-3627 in human RyR1).

View Article and Find Full Text PDF

S100A1, a 21-kDa dimeric Ca2+-binding protein, is an enhancer of cardiac Ca2+ release and contractility and a potential therapeutic agent for the treatment of cardiomyopathy. The role of S100A1 in skeletal muscle has been less well defined. Additionally, the precise molecular mechanism underlying S100A1 modulation of sarcoplasmic reticulum Ca2+ release in striated muscle has not been fully elucidated.

View Article and Find Full Text PDF

S100A1 is an EF-hand-containing Ca(2+)-binding protein that undergoes a conformational change upon binding calcium as is necessary to interact with protein targets and initiate a biological response. To better understand how calcium influences the structure and function of S100A1, the three-dimensional structure of calcium-bound S100A1 was determined by multidimensional NMR spectroscopy and compared to the previously determined structure of apo. In total, 3354 nuclear Overhauser effect-derived distance constraints, 240 dihedral constraints, 160 hydrogen bond constraints, and 362 residual dipolar coupling restraints derived from a series of two-dimensional, three-dimensional, and four-dimensional NMR experiments were used in its structure determination (>21 constraints per residue).

View Article and Find Full Text PDF

Fructose-1,6-(bis)phosphate aldolase is a ubiquitous enzyme that catalyzes the reversible aldol cleavage of fructose-1,6-(bis)phosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceral-dehyde-3-phosphate or glyceraldehyde, respectively. Vertebrate aldolases exist as three isozymes with different tissue distributions and kinetics: aldolase A (muscle and red blood cell), aldolase B (liver, kidney, and small intestine), and aldolase C (brain and neuronal tissue). The structures of human aldolases A and B are known and herein we report the first structure of the human aldolase C, solved by X-ray crystallography at 3.

View Article and Find Full Text PDF

S100 proteins have no known enzymatic activity and exert their intracellular effects via interaction with and regulation of the activity of other proteins, termed target proteins, in both a Ca(2+)-dependent and Ca(2+)-independent manner. Structural studies have identified the linker region between the two EF-hand Ca(2+) binding domains and the C-terminus as Ca(2+)-dependent target protein binding sites in several S100 family members. In fact, C-terminal aromatic residues are obligatory for interaction of S100A1 with several of its Ca(2+)-dependent target proteins.

View Article and Find Full Text PDF

S100A1 and S100B are members of a family of 20 kDa Ca2+-binding homodimers that play a role in signal transduction in mammalian cells. S100A1 is the major isoform in normal heart and S100B, normally a brain protein, is induced in hypertrophic myocardium and functions as an intrinsic negative modulator of the hypertrophic response. In order to examine the function of S100A1, we first showed that, in contrast to S100B, S100A1 was downregulated in rat experimental models of myocardial hypertrophy following myocardial infarction or pressure overload.

View Article and Find Full Text PDF

S100A1, a member of the S100 protein family, is an EF-hand containing Ca(2+)-binding protein (93 residues per subunit) with noncovalent interactions at its dimer interface. Each subunit of S100A1 has four alpha-helices and a small antiparallel beta-sheet consistent with two helix-loop-helix calcium-binding domains [Baldiserri et al. (1999) J.

View Article and Find Full Text PDF