Publications by authors named "Danlu Guo"

Water quality monitoring programs often collect large amounts of data with limited attention given to the assessment of the dominant drivers of spatial and temporal water quality variations at the catchment scale. This study uses a multi-model approach: a) to identify the influential catchment characteristics affecting spatial variability in water quality; and b) to predict spatial variability in water quality more reliably and robustly. Tropical catchments in the Great Barrier Reef (GBR) area, Australia, were used as a case study.

View Article and Find Full Text PDF

Climate change is expected to increase the prevalence of water-borne diseases especially in developing countries. Climate-resilient drinking water supplies are critical to protect communities from faecal contamination and thus against increasing disease risks. However, no quantitative assessment exists for the impacts of short-term climate variability on faecal contamination at different drinking water sources in developing countries, while existing understanding remains largely conceptual.

View Article and Find Full Text PDF

To provide more precise understanding of water quality changes, continuous sampling is being used more in surface water quality monitoring networks. However, it remains unclear how much improvement continuous monitoring provides over spot sampling, in identifying water quality changes over time. This study aims (1) to assess our ability to detect trends using water quality data of both high and low frequencies and (2) to assess the value of using high-frequency data as a surrogate to help detect trends in other constituents.

View Article and Find Full Text PDF

Climate change is expected to increase waterborne diseases especially in developing countries. However, we lack understanding of how different types of water sources (both improved and unimproved) are affected by climate change, and thus, where to prioritize future investments and improvements to maximize health outcomes. This is due to limited knowledge of the relationships between source water quality and the observed variability in climate conditions.

View Article and Find Full Text PDF