Influences of colloidal stabilities of nanoparticles (NPs) on the bioaccumulation of co-existing pollutants remains largely unknown. In this study, two oxidation products of nanoscale zero-valent iron (nZVI) with totally varied colloidal stabilities, termed highly oxidized nZVI (HO-nZVI) and lowly oxidized nZVI (LO-nZVI), were exposed to zebrafish with chromium (Cr); this approach was used to investigate the impacts of colloidal stability of oxidized nZVI on the bioaccumulation of Cr in zebrafish. A significant increase in the Cr and NP content in the viscera of fish in the presence of the oxidized nZVI after 20 days of exposure was confirmed, which indicated that Cr was consumed by fish through the uptake of the NPs.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2020
Predicting the aggregation tendency of nanoscale zero-valent iron (nZVI), oxidized nZVI, in particular, is crucial for the risk assessment of nZVI in aquatic environments. In this study, the comprehensive effects of the pH and ionic strength (IS) on the aggregation behaviors of two highly oxidized nZVIs (HO-nZVI) were examined. Compared with hematite nanoparticles, HO-nZVI presented a sudden acceleration in aggregation under critical conditions; moreover, the morphology of the HO-nZVI aggregates at pH and IS values higher or lower than the critical conditions was significantly different.
View Article and Find Full Text PDFOxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content.
View Article and Find Full Text PDFThe combined effects of titanium dioxide (TiO2) nanoparticles and humic acid (HA) on the bioaccumulation of cadmium (Cd) in Zebrafish were investigated. Experimental data on the equilibrium Cd bioaccumulation suggest that only the dissolved Cd effectively contributed to Cd bioaccumulation in HA solutions whereas both the dissolved and TiO2 associated Cd were accumulated in TiO2 or the mixture of HA and TiO2 solutions, due likely to the additional intestine uptake of the TiO2-bound Cd. The equilibrium Cd bioaccumulation in the mixed system was comparable to that in the corresponding HA solutions, and significantly lower than that in the corresponding TiO2 solutions (n=3, p<0.
View Article and Find Full Text PDF