Background: To build research capacity for early-career faculty conducting HIV/STI research with minoritized communities and to enhance diversity in the scientific workforce, the University of California, San Francisco (UCSF) Center for AIDS Prevention (CAPS) conducts a training program for visiting professors (VPs), begun in 1996. VPs are in residence at CAPS for three summers, complete a pilot research project, and prepare National Institutes of Health (NIH) grant proposals. Best practices and key elements for successfully training scholars of color, and others who work with minoritized communities, are identified.
View Article and Find Full Text PDFGalectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds β-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family.
View Article and Find Full Text PDFWe present the first measurement of elliptic (v(2)) and triangular (v(3)) flow in high-multiplicity (3)He+Au collisions at √(s(NN))=200 GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in (3)He+Au and in p+p collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the (3)He+Au system. The collective behavior is quantified in terms of elliptic v(2) and triangular v(3) anisotropy coefficients measured with respect to their corresponding event planes.
View Article and Find Full Text PDFUndecaprenyl pyrophosphate synthase (UPPs) is an essential enzyme in a key bacterial cell wall synthesis pathway. It catalyzes the consecutive condensations of isopentenyl pyrophosphate (IPP) groups on to a trans-farnesyl pyrophosphate (FPP) to produce a C55 isoprenoid, undecaprenyl pyrophosphate (UPP). Here we report the discovery and co-crystal structures of a drug-like UPPs inhibitor in complex with Streptococcus pneumoniae UPPs, with and without substrate FPP, at resolutions of 2.
View Article and Find Full Text PDFCarbohydrate-mediated host-pathogen interactions are essential to bacterial and viral pathogenesis, and represent an attractive target for the development of antiadhesives to prevent infection. We present a versatile microelectrode array-based platform to investigate carbohydrate-mediated protein and bacterial binding, with the objective of developing a generalizable method for screening inhibitors of host-microbe interactions. Microelectrode arrays are well suited for interrogating biological binding events, including proteins and whole-cells, and are amenable to electrochemical derivitization, facilitating rapid deposition of biomolecules.
View Article and Find Full Text PDFA previous venous thromboembolism is the most important risk factor for predicting recurrence of the condition. Several studies have shown that routine testing for inherited thrombophilias is not helpful in predicting the risk of recurrence or altering treatment decisions, and therefore is not cost-effective. Updated practice guidelines from the American College of Chest Physicians shift the focus away from laboratory testing and place stronger emphasis on identifying clinical factors when making treatment decisions.
View Article and Find Full Text PDFBackground: The CombiMatrix ElectraSense microarray is a highly multiplex, complementary metal oxide semiconductor with 12,544 electrodes that are individually addressable. This platform is commercially available as a custom DNA microarray; and, in this configuration, it has also been used to tether antibodies (Abs) specifically on electrodes using complementary DNA sequences conjugated to the Abs.
Methodology/principal Findings: An empirical method is described for developing and optimizing immunoassays on the CombiMatrix ElectraSense microarray based upon targeted deposition of polypyrrole (Ppy) and capture Ab.
The CombiMatrix antibody microarray is a versatile, sensitive detection platform based on the generation and transduction of electrochemical signals following antigen binding to surface antibodies. The sensor chip described herein is comprised of microelectrodes coupled to an adjacent bio-friendly matrix coated with antibodies to the biological pathogens Yersinia pestis and Bacillus anthracis, and the bacterial toxin staphylococcal enterotoxin B (SEB). Using this system, we were able to detect SEB and inactivated Y.
View Article and Find Full Text PDFThe CombiMatrix microarray with 12,544 electrodes supports in situ electrochemical synthesis of user-defined DNA probes. As an alternative, we immobilized commercially synthesized DNA probes on individual electrodes coated with electropolymerized polypyrrole (Ppy). Hybridization was measured using a biotinylated target oligonucleotide and either Cy5-streptavidin and fluorescence detection or horseradish peroxidase-streptavidin and enzyme-enhanced electrochemical detection.
View Article and Find Full Text PDFA series of 4-substituted proline amides was synthesized and evaluated as inhibitors of dipeptidyl pepdidase IV for the treatment of type 2 diabetes. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone (5) emerged as a potent (IC(50) = 13 nM) and selective compound, with high oral bioavailability in preclinical species and low plasma protein binding. Compound 5, PF-00734200, was selected for development as a potential new treatment for type 2 diabetes.
View Article and Find Full Text PDFDNA microarrays are an important tool with a variety of applications in gene expression studies, genotyping, pharmacogenomics, pathogen classification, drug discovery, sequencing and molecular diagnostics. They are having a strong impact in medical diagnostics for cancer, toxicology and infectious disease applications. A series of papers have been published describing DNA biochips as alternative to conventional microarray platforms to facilitate and ameliorate the signal readout.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
The phosphodiesterases (PDEs) are metal ion-dependent enzymes that regulate cellular signaling by metabolic inactivation of the ubiquitous second messengers cAMP and cGMP. In this role, the PDEs are involved in many biological and metabolic processes and are proven targets of successful drugs for the treatments of a wide range of diseases. However, because of the rapidity of the hydrolysis reaction, an experimental knowledge of the enzymatic mechanisms of the PDEs at the atomic level is still lacking.
View Article and Find Full Text PDFCholesteryl ester transfer protein (CETP) transfers neutral lipids between different types of plasma lipoprotein. Inhibitors of CETP elevate the fraction of plasma cholesterol associated with high-density lipoproteins and are being developed as new agents for the prevention and treatment of cardiovascular disease. The molecular basis of their function is not yet fully understood.
View Article and Find Full Text PDFBackground: We sought to understand how systemic factors might facilitate or impede providers' ability to screen for and intervene on prenatal behavioral risks.
Methods: We convened eight focus groups of 60 prenatal care providers to explore methods for assessing and counseling pregnant women about tobacco, alcohol, and illicit drug use. Because practice setting was often mentioned as either an inducement or barrier to risk prevention, we conducted a re-analysis of focus group transcripts to examine systemic factors.
Bioorg Med Chem Lett
December 2007
Explorations in the pyrimidinetrione series of MMP-13 inhibitors led to the discovery of a series of spiro-fused compounds that are potent and selective inhibitors of MMP-13. While other spiro-fused motifs are hydrolytically unstable, presumably due to electronic destabilization of the pyrimidinetrione ring, the spiropyrrolidine series does not share this liability. Greater than 100-fold selectivity versus other MMP family members was achieved by incorporation of an extended aryl-heteroaryl P1'group.
View Article and Find Full Text PDFBacterial and viral upper respiratory infections (URI) produce highly variable clinical symptoms that cannot be used to identify the etiologic agent. Proper treatment, however, depends on correct identification of the pathogen involved as antibiotics provide little or no benefit with viral infections. Here we describe a rapid and sensitive genotyping assay and microarray for URI identification using standard amplification and hybridization techniques, with electrochemical detection (ECD) on a semiconductor-based oligonucleotide microarray.
View Article and Find Full Text PDFA series of pyrrolidine based inhibitors of dipeptidyl peptidase IV were developed from a high throughput screening hit for the treatment of type 2 diabetes. Potency, selectivity, and pharmacokinetic properties were optimized resulting in the identification of a pre-clinical candidate for further profiling.
View Article and Find Full Text PDFLasofoxifene is a new and potent selective estrogen receptor modulator (SERM). The structural basis of its interaction with the estrogen receptor has been investigated by crystallographic analysis of its complex with the ligand-binding domain of estrogen receptor alpha at a resolution of 2.0 A.
View Article and Find Full Text PDFProprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with K(d) = 170 nM at the neutral pH of plasma, but with a K(d) as low as 1 nM at the acidic pH of endosomes.
View Article and Find Full Text PDFCholesteryl ester transfer protein (CETP) shuttles various lipids between lipoproteins, resulting in the net transfer of cholesteryl esters from atheroprotective, high-density lipoproteins (HDL) to atherogenic, lower-density species. Inhibition of CETP raises HDL cholesterol and may potentially be used to treat cardiovascular disease. Here we describe the structure of CETP at 2.
View Article and Find Full Text PDFObjective: We explored prenatal care providers' methods for addressing four behavioral risks in their pregnant patients: alcohol use, smoking, drug use, and domestic violence.
Design: We used qualitative, purposively sampled, focus group data.
Setting: Groups met in professional focus group settings.
Bacterial nicotinic acid mononucleotide adenylyltransferase (NaMNAT; EC 2.7.7.
View Article and Find Full Text PDFBackground: Dentists have a unique opportunity to address the problem of domestic violence (DV). The authors tested the effectiveness of a tutorial designed to educate dentists in identifying and responding to DV.
Methods: The authors developed a brief interactive multimedia tutorial for dentists and recruited practicing dentists (N = 174) for a randomized, controlled trial.
Inhibitors of the glucagon-like peptide-1 (GLP-1) degrading enzyme dipeptidyl peptidase IV (DPP-IV) have been shown to be effective treatments for type 2 diabetes in animal models and in human subjects. A novel series of cis-2,5-dicyanopyrrolidine alpha-amino amides were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. 1-({[1-(Hydroxymethyl)cyclopentyl]amino}acetyl)pyrrolidine-2,5-cis-dicarbonitrile (1c) is an achiral, slow-binding (time-dependent) inhibitor of DPP-IV that is selective for DPP-IV over other DPP isozymes and proline specific serine proteases, and which has oral bioavailability in preclinical species and in vivo efficacy in animal models.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
June 2006
The use of X-ray crystallography to derive three-dimensional structures for structure-aided drug design (SADD) is a common activity in drug discovery today. In this process, the structures of inhibitors or other ligands of interest complexed with their macromolecular target are solved and the structural information is used iteratively to design new molecules. The ability to form cocrystal complexes between a target protein and a ligand is essential to this process and therefore is of considerable interest to anyone practicing in this field.
View Article and Find Full Text PDF