The clinical application of 7-ethyl hydroxy-camptothecin (SN-38) maintains challenges not only due to its poor solubility and stability but also the lack of effective carriers to actively deliver SN-38 to deep tumor sites. Although SN-38-based nanomedicines could improve the solubility and stability from different aspects, the tumor targeting efficiency remains very low. Leveraging the hypoxic taxis of bifidobacteria bifidum (B.
View Article and Find Full Text PDFMost nanomedicines with suitable sizes (normally 100-200 nm) exhibit favorable accumulation in the periphery of tumors but hardly penetrate into deep tumors. Effective penetration of nanomedicines requires smaller sizes (less than 30 nm) to overcome the elevated tumor interstitial fluid pressure. Moreover, integrating an efficient diagnostic agent in the nanomedicines is in high demand for precision theranostics of tumors.
View Article and Find Full Text PDFPotent tumor regression remains challenging due to the lack of effective targeted drug delivery into deep tumors as well as the reduced susceptibility of cancer cells to anticancer agents in hypoxic environments. Bacteria-driven drug-delivery systems are promising carriers in overcoming targeting and diffusion limits that are inaccessible for conventional antitumor drugs. In this study, probiotic facultative anaerobe Escherichia coli Nissle 1917 (EcN) was functionalized and formed self-propelled microrobots to actively deliver therapeutic drug and photosensitizer to the deep hypoxic regions of tumors.
View Article and Find Full Text PDFThe clinical utility of 7-ethyl-10-hydroxycamptothecin (SN-38) is hampered by its low water solubility and reduced bioactivity at neutral or alkaline conditions. The rational design of an effective drug delivery system that can significantly enhance the therapeutic index of SN-38 and achieve complete tumor regression still remains a challenge. Herein, chitosan-based hybrid nanoparticles system co-loading with chemotherapeutic drug SN-38 and gold nanorods (AuNRs) was engineered for effective combinational photothermal-chemotherapy.
View Article and Find Full Text PDFNISSLE 1917 (EcN) is a Gram-negative strain with many prominent probiotic properties in the treatment of intestinal diseases such as diarrhea and inflammatory bowel disease (IBD), in particular ulcerative colitis. EcN not only exhibits antagonistic effects on a variety of intestinal pathogenic bacteria, but also regulates the secretion of immune factors and enhances the ability of host immunity. In this review, the mechanisms of EcN in the remission of inflammatory bowel disease are proposed and recent advances on the functionalized EcN are compiled to provide novel therapeutic strategies for the prevention and treatment of IBD.
View Article and Find Full Text PDF7-Ethyl-10-hydroxycamptothecin (SN-38) as a potent anti-tumor candidate, suffers the constraints from its poor water solubility, pH-dependent lactone ring stability and the lack of efficient delivery system without losing its activity. Herein, biocompatible superparamagnetic chitosan-based nanocomplexes complexing with water-soluble polymeric prodrug poly(L-glutamic acid)-SN-38 (PGA-SN-38) was engineered for efficient delivery of SN-38. The manufacturing process of colloidal complexes was green, expeditious and facile, with one-shot addition of PGA-SN-38 into chitosan solution without using any organic solvent or surfactant.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2021
The development of smart size-tunable drug delivery nanoplatform enables the solving of the paradox of inconsistent size-dependence of high tumor accumulation and deep penetration during its delivery process, thus achieving superior cancer treatment efficacy. Herein, we report a size-shrinkable nanomicelle complex system with an initial size of 101 nm enabling effective retention around the tumor periphery and could destruct to ultrasmall nanomicelles triggered by a near-infrared (NIR) laser to realize the deep tumor penetration. The nanomicelle system is consisted of an upper critical solution temperature (UCST)-type block copolymer poly(acrylamide-acrylonitrile)-polyethylene glycol-lipoic acid (p(AAm--AN)--PEG-LA) encapsulating gold nanorods.
View Article and Find Full Text PDFThe development of a rapid and diverse access to complex natural product-like 3,4-fused indole scaffolds has always attracted considerable attention from synthetic and medicinal communities. We herein disclose a modular and straightforward protocol to prepare the densely substituted polycyclic azepino[5,4,3-]indole scaffolds. This synthetic process involves an Ugi four-component reaction from easily available starting materials and a gold-catalyzed post-Ugi domino dearomatization/Michael addition sequence, enabling facile access to the highly functionalized azepino[5,4,3-]indole core with excellent chemo-, regio-, and diastereoselectivity.
View Article and Find Full Text PDFChitosan nanoparticles (CS-NPs) are under increasing investigation for the delivery of therapeutic proteins, such as vaccines, interferons, and biologics. A large number of studies have been taken on the characteristics of CS-NPs, and very few of these studies have focused on the microstructure of protein-loaded NPs. In this study, we prepared the CS-NPs by an ionic gelation method, and bovine serum albumin (BSA) was used as a model protein.
View Article and Find Full Text PDFConventional chemotherapy is effective for metastatic tumors widely present in colorectal cancer patients; however, chemotherapy may cause severe systemic toxicity due to a lack of specificity towards cancer cells. Effective delivery systems that can enhance targeted drug delivery to the desired tumor site and simultaneously protect the activity of drugs are in high demand. To that end, this study developed chitosan-based polyelectrolyte complexes (PECs) with the orientation of superparamagnetic nanoparticles, which enables the targeting delivery of the first-line model drug irinotecan (IRT) to the tumor area under a magnetic field.
View Article and Find Full Text PDFPolyelectrolyte complexes (PECs) as safe drug delivery carriers, are spontaneously formed by mixing the oppositely charged polyelectrolyte solutions in water without using organic solvents nor chemical cross-linker or surfactant. Intensifying attentions on the PECs study are aroused in academia and industry since the fabrication process of PECs is mild and they are ideal vectors for the delivery of susceptible drugs and macromolecules. Chitosan as the unique natural cationic polysaccharide, is a good bioadhesive material.
View Article and Find Full Text PDFBackground: Specific targeting ability and good cell penetration are two critical requirements of tumor-targeted delivery systems. In the present work, we developed a novel matrix metalloprotein-triggered, cell-penetrating, peptide-modified, star-shaped nanoparticle (NP) based on a functionalized copolymer (MePEG-Peptide-Tri-CL), with the peptide composed of GPLGIAG (matrix metalloprotein-triggered peptide for targeted delivery) and r9 (cell-penetrating peptide for penetration improvement) to enhance its biological specificity and therapeutic effect.
Results: Based on the in vitro release study, a sustained release profile was achieved for curcumin (Cur) release from the Cur-P-NPs at pH 7.
The limitations of anticancer drugs, including poor tumor targeting and weak uptake efficiency, are important factors affecting tumor therapy. According to characteristics of the tumor microenvironment, in this study, we aimed to synthesize matrix metalloproteinase (MMP)-responsive curcumin (Cur)-loaded nanoparticles (Cur-P-NPs) based on amphiphilic block copolymer (MePEG-peptide-PET-PCL) with MMP-cleavable peptide (GPLGIAGQ) and penetrating peptide (r9), modified to improve tumor targeting and cellular uptake. The average size of Cur-P-NPs was 176.
View Article and Find Full Text PDFA rapid approach for the diversity-oriented synthesis of complex bridged polycyclic N-heterocycles from readily available starting materials in two operational steps has been developed. This strategy firstly introduces molecular diversity by an Ugi four-component reaction, and then achieves these bridged N-heterocycles via an efficient gold-triggered chemo- and diastereoselective cascade non-oxidative ortho-dearomative spirocarbocyclization/Diels-Alder reaction sequence. The application of microwave irradiation for this cascade process efficiently shortens the reaction time to 10 minutes and improves the diastereoselectivity.
View Article and Find Full Text PDFDrug hydrolytic degradation, caused by atmospheric and inherent humidity, significantly reduces the therapeutic effect of pharmaceutical solid dosages. Moisture barrier film coating is one of the most appropriate and effective approaches to protect the active pharmaceutical ingredients (API) from hydrolytic degradation during the manufacturing process and storage. Coating formulation design and process control are the two most commonly used strategies to reduce water vapor permeability to achieve the moisture barrier function.
View Article and Find Full Text PDFClinical applications of curcumin (Cur) have been greatly restricted due to its low solubility and poor systemic bioavailability. Three-arm amphiphilic copolymer tricarballylic acid-poly (ε-caprolactone)-methoxypolyethylene glycol (Tri-CL-mPEG) nanoparticles (NPs) were designed to improve the solubility and bioavailability of Cur. The present study adopted a microchannel system to precisely control the preparation of self-assembly polymeric NPs via liquid flow-focusing and gas displacing method.
View Article and Find Full Text PDFA gold-catalysed post-Ugi chemo- and diastereoselective cascade dearomative spirocyclization/1,6-addition sequence is disclosed for the synthesis of diverse fused polyheterocyclic scaffolds bearing indole, pyrrole, benzothiophene, furan or electron-rich arene moieties from easily available building blocks. The effectiveness and efficiency of this diversity-oriented approach has been proved in the rapid construction of 28 fused polyheterocyclic scaffolds with a good building-block variability and structural complexity in two operational steps.
View Article and Find Full Text PDFA modular and streamlined synthetic strategy for the generation of bridged indole alkaloid-like heterocycles from easily available building blocks is elaborated. This approach utilizes an Ugi four-component reaction, establishing diversity, followed by an efficient cationic gold-triggered intramolecular cascade non-oxidative dearomative spirocarbocyclization/concerted [4 + 2] cyclization cascade, furnishing these architecturally complex and distinct bridged heterocyclic scaffolds with good diastereoselectivity.
View Article and Find Full Text PDFChitosan-hyaluronan (HYA) polyelectrolyte complexes (PECs) were designed to maintain their colloidal stabilities in physiological ionic strength and pH, via a new concept of ternary complexes. This strategy relied on the formation of a binary PEC between chitosan and a strong polyacid, dextran sulphate (DS) or heparin (HEP), and further functionalization with HYA. The major parameter leading to stabilized colloids was a high ratio of the degrees of polymerization of chitosan versus the strong polyacid.
View Article and Find Full Text PDFZinc(ii) stabilized polyelectrolyte nano-complexes (PECs) of chitosan and hyaluronan (HYA) were designed as safe and efficient drug delivery systems. HIV-1 reverse transcriptase inhibitor tenofovir (TF) was quantitatively encapsulated and the particle interface could be functionalized in PBS with targeting proteins such as anti-α4β7 immunoglobulin A. Chitosan-HYA nanoPECs were non-cytotoxic on human peripheral blood mononuclear cells (PBMCs), within the investigated nanoparticle concentrations.
View Article and Find Full Text PDFPolyelectrolyte complexes (PECs) constituted of chitosan and chondroitin sulfate (ChonS) were formed by the one-shot addition of default amounts of polyanion to an excess of polycation. Key variables of the formulation process (e.g.
View Article and Find Full Text PDFPolyelectrolyte complexes (PECs) between hyaluronan (HYA) and chitosan were obtained by the one-shot addition of default amounts of polyanion to an excess of polycation. The impact of intrinsic parameters (degree of polymerization and degree of acetylation) and extrinsic parameters (charge mixing ratio, the concentration and pH of polyelectrolyte solutions) on particle sizes and polydispersity were investigated. The PECs maintained their colloidal stability when stored in water.
View Article and Find Full Text PDFThe compound nanoparticles of chitosan (CS) and cyclodextrin (CD) loading with hydrophilic and hydrophobic drug simultaneously were prepared via the cross-linking method. Methotrexate (MTX) and calcium folinate (CaF) were selected as the model drugs. The prepared nanoparticles were characterized by FT-IR spectroscopy to confirm the cross-linking reaction between CS and cross-linking agent.
View Article and Find Full Text PDF