This study focuses on optimizing double stir casting process parameters to enhance the tensile strength of hybrid composites comprising aluminum alloy, brown pumice, and coal ash, intended for brake disc applications. Analytical techniques including X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were employed to characterize the composite constituents. The Taguchi method was utilized for experimental design and optimization to determine the optimal weight compositions of brown pumice and coal ash, as well as stir casting parameters (stirrer speed, pouring temperature, and stirring duration).
View Article and Find Full Text PDFIn this study, the anticorrosion potential of carboxylic compounds; Lanthanum 4-hydroxycinnamate La(4OHCin), Cerium 4-hydroxycinnamate Ce(4OHCin) and Praseodymium 4-hydroxycinnamate Pr(4OHCin) for the protection of Al-Cu-Li alloy was investigated in 3.5% NaCl solution using electrochemical tests (EIS and PDP), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The findings achieved show a very good correlation between electrochemical responses and surface morphologies of the exposed alloy, indicating a modification of the surface by precipitation of the inhibitor species, leading to effective protection against corrosion.
View Article and Find Full Text PDFAluminium matrix composites, which are a subclass of metal matrix composites, have characteristics including low density, high stiffness and strength, better wear resistance, controlled thermal expansion, greater fatigue resistance, and improved stability at high temperatures. The scientific and industrial communities are interested in these composites because they may be used to manufacture a broad variety of components for cutting-edge applications. This has study observed how the stirring speed, processing temperature, and stirring duration of the stir casting process affected the percentage elongation of Al-Pumice (PP)-Carbonized Coal Particles (CCP) hybrid composites.
View Article and Find Full Text PDFMechanical and corrosion properties of welded duplex stainless steel (DSS) structures are of paramount consideration in many engineering applications. The current research investigates the mechanical properties and corrosion integrity of duplex stainless-steel weldment in a simulated 3.5% NaCl environment using specially developed novel electrodes without the addition of alloying elements to the flux samples.
View Article and Find Full Text PDF