The brain forms unified, coherent, and accurate percepts of events occurring in the environment by integrating information from multiple senses through the process of multisensory integration. The neural mechanisms underlying this process, its development and its maturation in a multisensory environment are yet to be properly understood. Numerous psychophysical studies suggest that the multisensory cue integration process follows the principle of Bayesian estimation, where the contributions of individual sensory modalities are proportional to the relative reliabilities of the different sensory stimuli.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2020
Valentino Braitenberg reported his seminal thought experiment in 1984 using reactive automatons or vehicles with relatively simple sensorimotor connections as models for seemingly complex cognitive processes in biological brains. Braitenberg's work, meant as a metaphor for biological life encompassed a deep knowledge of and served as an analogy for the multitude of neural processes and pathways that underlie animal behavior, suggesting that seemingly complex behavior may arise from relatively simple designs. Braitenberg vehicles have been adopted in robotics and artificial life research for sensor-driven navigation behaviors in robots, such as localizing sound and chemical sources, orienting toward or away from current flow under water etc.
View Article and Find Full Text PDFFront Neurorobot
March 2017
Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion of a relevant stimulus. Motion perception is a fundamental ability in neural sensory processing and crucial in target tracking tasks. Tracking a stimulus entails the ability to perceive its motion, i.
View Article and Find Full Text PDFThe peripheral auditory system of lizards has been extensively studied, because of its remarkable directionality. In this paper, we review the research that has been performed on this system using a biorobotic approach. The various robotic implementations developed to date, both wheeled and legged, of the auditory model exhibit strong phonotactic performance for two types of steering mechanisms-a simple threshold decision model and Braitenberg sensorimotor cross-couplings.
View Article and Find Full Text PDF