Publications by authors named "Danilo Moreta"

Objectives: This report provides information about the public release of the 2018-2019 Maize G X E project of the Genomes to Fields (G2F) Initiative datasets. G2F is an umbrella initiative that evaluates maize hybrids and inbred lines across multiple environments and makes available phenotypic, genotypic, environmental, and metadata information. The initiative understands the necessity to characterize and deploy public sources of genetic diversity to face the challenges for more sustainable agriculture in the context of variable environmental conditions.

View Article and Find Full Text PDF

Accurate prediction of the phenotypic outcomes produced by different combinations of genotypes, environments, and management interventions remains a key goal in biology with direct applications to agriculture, research, and conservation. The past decades have seen an expansion of new methods applied toward this goal. Here we predict maize yield using deep neural networks, compare the efficacy of 2 model development methods, and contextualize model performance using conventional linear and machine learning models.

View Article and Find Full Text PDF

Brown midrib (BMR) maize (Zea mays L.) harbors mutations that result in lower lignin levels and higher feed digestibility, making it a desirable silage market class for ruminant nutrition. Northern leaf blight (NLB) epidemics in upstate New York highlighted the disease susceptibility of commercially grown BMR maize hybrids.

View Article and Find Full Text PDF

The tropical forage grass Brachiaria humidicola (Bh) controls soil microbial nitrification via biological nitrification inhibition (BNI). The aim of our study was to verify if nitrate reductase activity (NRA) in Bh roots or leaves reflects in vivo performance of BNI in soils. NRA was measured in roots and leaves of contrasting accessions and apomictic hybrids of Bh grown under controlled greenhouse and natural field conditions.

View Article and Find Full Text PDF

The tropical forage grass (Bh) suppresses the activity of soil nitrifiers through biological nitrification inhibition (BNI). As a result, nitrate ( ) formation and leaching are reduced which is also expected to tighten the soil nitrogen (N) cycle. However, the beneficial relationship between reduced losses and enhanced N uptake due to BNI has not been experimentally demonstrated yet.

View Article and Find Full Text PDF

The exploration, conservation, and use of agricultural biodiversity are essential components of efficient transdisciplinary research for a sustainable agriculture and food sector. Most recent advances on plant biotechnology and crop genomics must be complemented with a holistic management of plant genetic resources. Plant breeding programs aimed at improving agricultural productivity and food security can benefit from the systematic exploitation and conservation of genetic diversity to meet the demands of a growing population facing climate change.

View Article and Find Full Text PDF

Background: Common bean is an important legume crop with only a moderate number of short expressed sequence tags (ESTs) made with traditional methods. The goal of this research was to use full-length cDNA technology to develop ESTs that would overlap with the beginning of open reading frames and therefore be useful for gene annotation of genomic sequences. The library was also constructed to represent genes expressed under drought, low soil phosphorus and high soil aluminum toxicity.

View Article and Find Full Text PDF