RMSProp is one of the most popular stochastic optimization algorithms in deep learning applications. However, recent work has pointed out that this method may not converge to the optimal solution even in simple convex settings. To this end, we propose a time-varying version of RMSProp to fix the non-convergence issues.
View Article and Find Full Text PDFWhile tensor ring (TR) decomposition methods have been extensively studied, the determination of TR-ranks remains a challenging problem, with existing methods being typically sensitive to the determination of the starting rank (i.e., the first rank to be optimized).
View Article and Find Full Text PDFCirc Cardiovasc Qual Outcomes
December 2024
Graph neural networks (GNNs) have become a popular approach for semi-supervised graph representation learning. GNNs research has generally focused on improving methodological details, whereas less attention has been paid to exploring the importance of labeling the data. However, for semi-supervised learning, the quality of training data is vital.
View Article and Find Full Text PDFAdam-type algorithms have become a preferred choice for optimization in the deep learning setting; however, despite their success, their convergence is still not well understood. To this end, we introduce a unified framework for Adam-type algorithms, termed UAdam. It is equipped with a general form of the second-order moment, which makes it possible to include Adam and its existing and future variants as special cases, such as NAdam, AMSGrad, AdaBound, AdaFom, and Adan.
View Article and Find Full Text PDFThe electrocardiogram (ECG) can capture obesity-related cardiac changes. Artificial intelligence-enhanced ECG (AI-ECG) can identify subclinical disease. We trained an AI-ECG model to predict body mass index (BMI) from the ECG alone.
View Article and Find Full Text PDFObjective: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.
Methods And Procedures: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work.
The rapidly increasing prevalence of debilitating breathing disorders, such as chronic obstructive pulmonary disease (COPD), calls for a meaningful integration of artificial intelligence (AI) into respiratory healthcare. Deep learning techniques are "data hungry" whilst patient-based data is invariably expensive and time consuming to record. To this end, we introduce a novel COPD-simulator, a physical apparatus with an easy to replicate design which enables rapid and effective generation of a wide range of COPD-like data from healthy subjects, for enhanced training of deep learning frameworks.
View Article and Find Full Text PDFThe main purpose of this paper is to provide information on how to create a convolutional neural network (CNN) for extracting features from EEG signals. Our task was to understand the primary aspects of creating and fine-tuning CNNs for various application scenarios. We considered the characteristics of EEG signals, coupled with an exploration of various signal processing and data preparation techniques.
View Article and Find Full Text PDFThe Ear-ECG provides a continuous Lead I like electrocardiogram (ECG) by measuring the potential difference related to heart activity by electrodes which are embedded within earphones. However, the significant increase in wearability and comfort enabled by Ear-ECG is often accompanied by a degradation in signal quality - an obstacle that is shared by the majority of wearable technologies. We aim to resolve this issue by introducing a Deep Matched Filter (Deep-MF) for the highly accurate detection of R-peaks in wearable ECG, thus enhancing the utility of Ear-ECG in real-world scenarios.
View Article and Find Full Text PDFThe ear is well positioned to accommodate both brain and vital signs monitoring, via so-called hearable devices. Consequently, ear-based electroencephalography has recently garnered great interest. However, despite the considerable potential of hearable based cardiac monitoring, the biophysics and characteristic cardiac rhythm of ear-based electrocardiography (ECG) are not yet well understood.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Accurate pulse-oximeter readings are critical for clinical decisions, especially when arterial blood-gas tests - the gold standard for determining oxygen saturation levels - are not available, such as when determining COVID-19 severity. Several studies demonstrate that pulse oxygen saturation estimated from photoplethysmography (PPG) introduces a racial bias due to the more profound scattering of light in subjects with darker skin due to the increased presence of melanin. This leads to an overestimation of blood oxygen saturation in those with darker skin that is increased for low blood oxygen levels and can result in a patient not receiving potentially life-saving supplemental oxygen.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
The success of deep learning methods has enabled many modern wearable health applications, but has also highlighted the critical caveat of their extremely data hungry nature. While the widely explored wrist and finger photoplethysmography (PPG) sites are less affected, given the large available databases, this issue is prohibitive to exploring the full potential of novel recording locations such as in-ear wearables. To this end, we assess the feasibility of transfer learning from finger PPG to in-ear PPG in the context of deep learning for respiratory monitoring.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Sleep disorders are a prevalent problem among older adults, yet obtaining an accurate and reliable assessment of sleep quality can be challenging. Traditional polysomnography (PSG) is the gold standard for sleep staging, but is obtrusive, expensive, and requires expert assistance. To this end, we propose a minimally invasive single-channel single ear-EEG automatic sleep staging method for older adults.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless, non-invasive, and continuous solution is suitable for remote and ambulatory monitoring. A machine learning model based on PPG signal can be used to detect hypertension, estimate beat-by-beat ABP values, and even reconstruct the shape of the ABP.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
This work aims to classify physiological states using heart rate variability (HRV) features extracted from electrocardiograms recorded in the ears (ear-ECG). The physiological states considered in this work are: (a) normal breathing, (b) controlled slow breathing, and (c) mental exercises. Since both (b) and (c) cause higher variance in heartbeat intervals, breathing-related features (SpO and mean breathing interval) from the ear Photoplethysmogram (ear-PPG) are used to facilitate classification.
View Article and Find Full Text PDFAt present, a medium-level microcontroller is capable of performing edge computing and can handle the computation of neural network kernel functions. This makes it possible to implement a complete end-to-end solution incorporating signal acquisition, digital signal processing, and machine learning for the classification of cardiac arrhythmias on a small wearable device. In this work, we describe the design and implementation of several classifiers for atrial fibrillation detection on a general-purpose ARM Cortex-M4 microcontroller.
View Article and Find Full Text PDFPhotoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making.
View Article and Find Full Text PDFDuplex ultrasound (DUS) is the most widely used method for surveillance of arteriovenous fistulae (AVF) created for dialysis. However, DUS is poor at predicting AVF outcomes and there is a need for novel methods that can more accurately evaluate multidirectional AVF flow. In this study we aimed to evaluate the feasibility of detecting AVF stenosis using a novel method combining tensor-decomposition of B-mode ultrasound cine loops (videos) of blood flow and machine learning classification.
View Article and Find Full Text PDFModern data analytics applications are increasingly characterized by exceedingly large and multidimensional data sources. This represents a challenge for traditional machine learning models, as the number of model parameters needed to process such data grows exponentially with the data dimensions, an effect known as the curse of dimensionality. Recently, tensor decomposition (TD) techniques have shown promising results in reducing the computational costs associated with large-dimensional models while achieving comparable performance.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2024
Graph neural networks (GNNs) tend to suffer from high computation costs due to the exponentially increasing scale of graph data and a large number of model parameters, which restricts their utility in practical applications. To this end, some recent works focus on sparsifying GNNs (including graph structures and model parameters) with the lottery ticket hypothesis (LTH) to reduce inference costs while maintaining performance levels. However, the LTH-based methods suffer from two major drawbacks: 1) they require exhaustive and iterative training of dense models, resulting in an extremely large training computation cost, and 2) they only trim graph structures and model parameters but ignore the node feature dimension, where vast redundancy exists.
View Article and Find Full Text PDFBackground: Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.
Methods: We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT.
Monitoring diabetes saves lives. To this end, we introduce a novel, unobtrusive, and readily deployable in-ear device for the continuous and non-invasive measurement of blood glucose levels (BGLs). The device is equipped with a low-cost commercially available pulse oximeter whose infrared wavelength (880 nm) is used for the acquisition of photoplethysmography (PPG).
View Article and Find Full Text PDFAims: Accurately determining atrial arrhythmia mechanisms from a 12-lead electrocardiogram (ECG) can be challenging. Given the high success rate of cavotricuspid isthmus (CTI) ablation, identification of CTI-dependent typical atrial flutter (AFL) is important for treatment decisions and procedure planning. We sought to train a convolutional neural network (CNN) to classify CTI-dependent AFL vs.
View Article and Find Full Text PDF