The potential of aerogels as catalysts for the synthesis of a relevant class of bis-heterocyclic compounds such as bis(indolyl)methanes was investigated. In particular, the studied catalyst was a nanocomposite aerogel based on nanocrystalline nickel ferrite (NiFeO) dispersed on amorphous porous silica aerogel obtained by two-step sol-gel synthesis followed by gel drying under supercritical conditions and calcination treatments. It was found that the NiFeO/SiO aerogel is an active catalyst for the selected reaction, enabling high conversions at room temperature, and it proved to be active for three repeated runs.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2023
The oxygen storage capacity of ceria-based catalytic materials is influenced by their size, morphology, and surface structure, which can be tuned using surfactant-mediated synthesis. In particular, the cuboidal morphology exposes the most reactive surfaces; however, when the capping agent is removed, the nanocubes can agglomerate and limit the available reactive surface. Here, we study ceria nanocubes, lanthanum-doped ceria nanocubes, and ceria nanocubes embedded inside a highly porous silica aerogel by high-energy resolution fluorescence detection-X-ray absorption near edge spectroscopy at the Ce L edge.
View Article and Find Full Text PDFCuFeO is an example of ferrites whose physico-chemical properties can vary greatly at the nanoscale. Here, sol-gel techniques are used to produce CuFeO-SiO nanocomposites where copper ferrite nanocrystals are grown within a porous dielectric silica matrix. Nanocomposites in the form of both xerogels and aerogels with variable loadings of copper ferrite (5 wt%, 10 wt% and 15 wt%) were synthesized.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2021
Surfactant-mediated chemical routes allow one to synthesize highly engineered shape- and size-controlled nanocrystals. However, the occurrence of capping agents on the surface of the nanocrystals is undesirable for selected applications. Here, a novel approach to the production of shape-controlled nanocrystals which exhibit high thermal stability is demonstrated.
View Article and Find Full Text PDFThe capability of synthesizing specific nanoparticles (NPs) by varying their shape, size and composition in a controlled fashion represents a typical set of engineering tools that tune the NPs magnetic response via their anisotropy. In particular, variations in NP composition mainly affect the magnetocrystalline anisotropy component, while the different magnetic responses of NPs with isotropic (i.e.
View Article and Find Full Text PDFIn this study, new CeO-SiO aerogel nanocomposites obtained by controlled growth of CeO nanoparticles within the highly porous matrix of a SiO aerogel are presented. The nanocomposites have been synthesized via a sol-gel route, employing cerium (III) nitrate as the CeO precursor and selected surfactants to control the growth of the CeO nanoparticles, which occurs during the supercritical drying of the aerogels. Samples with different loading of the CeO dispersed phase, ranging from 5 to 15%, were obtained.
View Article and Find Full Text PDFCeria nanocubes have been doped with increasing amounts of lanthanum to enhance their redox ability. X-ray diffraction and transmission electron microscopy techniques provide a consistent picture indicating that there is an upper limit to the lanthanum that can be incorporated in the fluorite structure of ceria nanocubes, which is close to 7.5 mol% La.
View Article and Find Full Text PDFCopper ferrite, belonging to the wide and technologically relevant class of spinel ferrites, was grown in the form of t-CuFeO nanocrystals within a porous matrix of silica in the form of either an aerogel or a xerogel, and compared to a bulk sample. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed the presence of two different sub-lattices within the crystal structure of t-CuFeO, one tetragonal and one cubic, defined by the Cu and Fe ions respectively. Our investigation provides evidence that the Jahn-Teller distortion, which occurs on the Cu ions located in octahedral sites, does not affect the coordination geometry of the Fe ions, regardless of their location in octahedral or tetrahedral sites.
View Article and Find Full Text PDFSamples of nickel cobaltite, a mixed oxide occurring in the spinel structure which is currently extensively investigated because of its prospective application as ferromagnetic, electrocatalytic, and cost-effective energy storage material were prepared in the form of nanocrystals stabilized in a highly porous silica aerogel and as unsupported nanoparticles. Nickel cobaltite nanocrystals with average size 4 nm are successfully grown for the first time into the silica aerogel provided that a controlled oxidation of the metal precursor phases is carried out, consisting in a reduction under H flow followed by mild oxidation in air. The investigation of the average oxidation state of the cations and of their distribution between the sites within the spinel structure, which is commonly described assuming the Ni cations are only located in the octahedral sites, has been carried out by X-ray absorption spectroscopy providing evidence for the first time that the unsupported nickel cobaltite sample has a Ni : Co molar ratio higher than the nominal ratio of 1 : 2 and a larger than expected average overall oxidation state of the cobalt and nickel cations.
View Article and Find Full Text PDFCopper-based nanoparticles, supported on either a silica aerogel or cubic mesostructured silicas obtained by using two different synthetic protocols, were used as catalysts for the water gas shift reaction. The obtained nanocomposites were thoroughly characterised before and after catalysis through nitrogen adsorption-desorption measurements at -196 °C, TEM, and wide- and low-angle XRD. The samples before catalysis contained nanoparticles of copper oxides (either CuO or Cu O), whereas the formation of metallic copper nanoparticles, constituting the active catalytic phase, was observed either by using pre-treatment in a reducing atmosphere or directly during the catalytic reaction owing to the presence of carbon monoxide.
View Article and Find Full Text PDFA simple change of one chloro substituent on the chloranilate ligand with a cyano group dramatically affects the electronic properties of the anilate moiety inducing unprecedented luminescence properties in the class of anilate-based ligands and their metal complexes. Here we report on the optimized synthesis and full characterization, including photoluminescence, of the chlorocyananilate ligand (ClCNAn(2-)) (dianion of the 3-chloro-6-cyano-2,5-dihydroxybenzoquinone, H2ClCNC6O4), a unique example of a heterosubstituted anilate ligand whose electronic properties, optical properties and coordination chemistry have never been investigated to date, even though it has been known since 1966. The synthesis and full characterization of its tris-chelated metal complexes with Cr(iii), Fe(iii), and Al(iii) metal ions are also described herein.
View Article and Find Full Text PDFA new type of mesostructured hybrid organic-inorganic film has been synthesised by evaporation-induced self-assembly using 3-glycidoxypropyltrimethoxysilane as the precursor and a tri-block copolymer, Pluronic F127, as the template. The chemistry has been tuned to form bridged polysilsesquioxanes that self-organise into ordered lamellar structures. Controlled aging under highly basic conditions, which has been monitored by Raman and infrared spectroscopy, has been used to obtain the layered ordered hybrid structures in the precursor sol.
View Article and Find Full Text PDFWe have recently characterized a natural rubber in the latex of Euphorbia characias. Following that study, we here investigated the rubber particles and rubber transferase in that Mediterranean shrub. Rubber particles, observed by scanning electron microscopy, are spherical in shape with diameter ranging from 0.
View Article and Find Full Text PDFSilica mesoporous nanocomposite films containing graphene nanosheets and gold nanoparticles have been prepared via a one-pot synthesis using silicon tetrachloride, gold(III) chloride tetrahydrate, a 1-N-vinyl-2-pyrrolidone dispersion of exfoliated graphene and Pluronic F127 as a structuring agent. The composite films have shown graphene-mediated surface-enhanced Raman scattering (G-SERS). Graphene has been introduced as dispersed bilayer sheets while gold has been thermally reduced in situ to form nanoparticles of around 6 nm which preferentially nucleate on the surface of the graphene nanosheets.
View Article and Find Full Text PDFHere we report on new tris(haloanilato)metallate(III) complexes with general formula [A]3[M(X2An)3] (A = (n-Bu)4N(+), (Ph)4P(+); M = Cr(III), Fe(III); X2An = 3,6-dihalo derivatives of 2,5-dihydroxybenzoquinone (H4C6O4), chloranilate (Cl2An(2-)), bromanilate (Br2An(2-)) and iodanilate (I2An(2-))), obtained by a general synthetic strategy, and their full characterization. The crystal structures of these Fe(III) and Cr(III) haloanilate complexes consist of anions formed by homoleptic complexes formulated as [M(X2An)3](3-) and (Et)3NH(+), (n-Bu)4N(+), or (Ph4)P(+) cations. All complexes exhibit octahedral coordination geometry with metal ions surrounded by six oxygen atoms from three chelate ligands.
View Article and Find Full Text PDFWe synthesize colloidal CdSe@CdS octapod nanocrystals decorated with Pt domains, resulting in a metal-semiconductor heterostructure. We devise a protocol to control the growth of Pt on the CdS surface, realizing both a selective tipping and a non-selective coverage. Ultrafast optical spectroscopy, particularly femtosecond transient absorption, is employed to correlate the dynamics of optical excitations with the nanocrystal morphology.
View Article and Find Full Text PDFTo fully exploit the potential of self-assembly in a single step, we have designed an integrated process to obtain mesoporous graphene nanocomposite films. The synthesis allows incorporating graphene sheets with a small number of defects into highly ordered and transparent mesoporous titania films. The careful design of the porous matrix at the mesoscale ensures the highest diffusivity in the films.
View Article and Find Full Text PDFThe [Yb(5,7ClQ)(2)(H5,7ClQ)(2)Cl] (1) complex, that exhibits dual-luminescence in the visible (ligand-centered) and in the NIR (Yb-centered), has been incorporated into a silica sol-gel glass obtaining 1-doped glassy material which is optically transparent and homogeneous and with good mechanical properties. The doped sol-gel glass can be considered a "solid state solution" and photophysical studies demonstrate that the emissive properties of the dopant complex are preserved in the silica matrix. Observed NIR decay times fall in the μs range and are likely limited by "second-sphere" matrix interactions.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
March 2011
Multiwalled carbon nanotube/FeCo nanocomposites were produced by Catalytic Chemical Vapour Deposition using highly porous FeCo-SiO2 aerogels with different loadings and dimensions of FeCo nanoparticles as catalysts. Multiwalled carbon nanotubes with average number of walls depending on the size of the catalyst nanoparticles were obtained. Inside the nanotubes spherical or elliptical FeCo nanoparticles are retained, and the magnetic properties of the resulting nanocomposites were characterized in detail.
View Article and Find Full Text PDFThe preparation of highly porous MnFe2O4-SiO2 and NiFe2O4-SiO2 nanocomposite aerogels with high purity and homogeneity was successfully achieved by a sol-gel procedure involving urea-assisted co-gelation of the precursor phases firstly applied for the synthesis of CoFe2O4-SiO2. This method allows fast gelation, giving rise to aerogels with 97% porosity. The structural, morphological and textural characterization as a function of thermal treatments was carried out by a multitechnique approach confirming that, as in the case of CoFe2O4-SiO2, the formation of single nanocrystals of manganese ferrite and nickel ferrite with spinel structure occurs after heating at 750 degrees C and is complete at 900 degrees C when the high porosity typical of aerogels is still retained.
View Article and Find Full Text PDFFeCo-SiO2 aerogel nanocomposites with different porosity were obtained using two different sol-gel procedures: the first involves a single acidic step and gives rise to relatively dense aerogels while the second procedure allows one to obtain highly porous aerogels using urea in the second step to promote fast gelation. Samples with different loading of FeCo equimolar alloy and with different Fe : Co ratios were prepared. The magnetic properties of all the nanocomposite aerogels were extensively studied as a function of porosity and composition.
View Article and Find Full Text PDFThe preparation of highly porous CoFe2O4-SiO2 nanocomposite aerogels was successfully achieved by a novel sol-gel procedure involving urea-assisted co-gelation of the precursor phases. This method allows fast gelation, giving rise to an aerogel with 97% porosity. The formation of CoFe2O4 nanocrystals homogeneously distributed within the matrix occurs after calcination at 750 degrees C and is complete at 900 degrees C.
View Article and Find Full Text PDF