Publications by authors named "Danilo Avola"

This study presents a Subject-Aware Transformer-based neural network designed for the Electroencephalogram (EEG) Emotion Recognition task (SATEER), which entails the analysis of EEG signals to classify and interpret human emotional states. SATEER processes the EEG waveforms by transforming them into Mel spectrograms, which can be seen as particular cases of images with the number of channels equal to the number of electrodes used during the recording process; this type of data can thus be processed using a Computer Vision pipeline. Distinct from preceding approaches, this model addresses the variability in individual responses to identical stimuli by incorporating a User Embedder module.

View Article and Find Full Text PDF

Emotion recognition plays an essential role in human-human interaction since it is a key to understanding the emotional states and reactions of human beings when they are subject to events and engagements in everyday life. Moving towards human-computer interaction, the study of emotions becomes fundamental because it is at the basis of the design of advanced systems to support a broad spectrum of application areas, including forensic, rehabilitative, educational, and many others. An effective method for discriminating emotions is based on ElectroEncephaloGraphy (EEG) data analysis, which is used as input for classification systems.

View Article and Find Full Text PDF

Background: aortic stenosis is a common heart valve disease that mainly affects older people in developed countries. Its early detection is crucial to prevent the irreversible disease progression and, eventually, death. A typical screening technique to detect stenosis uses echocardiograms; however, variations introduced by other tissues, camera movements, and uneven lighting can hamper the visual inspection, leading to misdiagnosis.

View Article and Find Full Text PDF

During flight, unmanned aerial vehicles (UAVs) need several sensors to follow a predefined path and reach a specific destination. To this aim, they generally exploit an inertial measurement unit (IMU) for pose estimation. Usually, in the UAV context, an IMU entails a three-axis accelerometer and a three-axis gyroscope.

View Article and Find Full Text PDF

Improving existing neural network architectures can involve several design choices such as manipulating the loss functions, employing a diverse learning strategy, exploiting gradient evolution at training time, optimizing the network hyper-parameters, or increasing the architecture depth. The latter approach is a straightforward solution, since it directly enhances the representation capabilities of a network; however, the increased depth generally incurs in the well-known vanishing gradient problem. In this paper, borrowing from different methods addressing this issue, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.

View Article and Find Full Text PDF

Background: over the last year, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants have highlighted the importance of screening tools with high diagnostic accuracy for new illnesses such as COVID-19. In that regard, deep learning approaches have proven as effective solutions for pneumonia classification, especially when considering chest-x-rays images. However, this lung infection can also be caused by other viral, bacterial or fungi pathogens.

View Article and Find Full Text PDF

The increasing availability of wireless access points (APs) is leading toward human sensing applications based on Wi-Fi signals as support or alternative tools to the widespread visual sensors, where the signals enable to address well-known vision-related problems such as illumination changes or occlusions. Indeed, using image synthesis techniques to translate radio frequencies to the visible spectrum can become essential to obtain otherwise unavailable visual data. This domain-to-domain translation is feasible because both objects and people affect electromagnetic waves, causing radio and optical frequencies variations.

View Article and Find Full Text PDF

Deception detection is a relevant ability in high stakes situations such as police interrogatories or court trials, where the outcome is highly influenced by the interviewed person behavior. With the use of specific devices, e.g.

View Article and Find Full Text PDF

Person re-identification is concerned with matching people across disjointed camera views at different places and different time instants. This task results of great interest in computer vision, especially in video surveillance applications where the re-identification and tracking of persons are required on uncontrolled crowded spaces and after long time periods. The latter aspects are responsible for most of the current unsolved problems of person re-identification, in fact, the presence of many people in a location as well as the passing of hours or days give arise to important visual appearance changes of people, for example, clothes, lighting, and occlusions; thus making person re-identification a very hard task.

View Article and Find Full Text PDF

Moving object detection in video streams plays a key role in many computer vision applications. In particular, separation between background and foreground items represents a main prerequisite to carry out more complex tasks, such as object classification, vehicle tracking, and person re-identification. Despite the progress made in recent years, a main challenge of moving object detection still regards the management of dynamic aspects, including bootstrapping and illumination changes.

View Article and Find Full Text PDF

Strokes, surgeries, or degenerative diseases can impair motor abilities and balance. Long-term rehabilitation is often the only way to recover, as completely as possible, these lost skills. To be effective, this type of rehabilitation should follow three main rules.

View Article and Find Full Text PDF

Objective: In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function.

View Article and Find Full Text PDF

Background And Objective: The degeneration of the balance control system in the elderly and in many pathologies requires measuring the equilibrium conditions very often. In clinical practice, equilibrium control is commonly evaluated by using a force platform (stabilometric platform) in a clinical environment. In this paper, we demonstrate how a simple movement analysis system, based on a 3D video camera and a 3D real time model reconstruction of the human body, can be used to collect information usually recorded by a physical stabilometric platform.

View Article and Find Full Text PDF

Post-stroke patients and people suffering from hand diseases often need rehabilitation therapy. The recovery of original skills, when possible, is closely related to the frequency, quality, and duration of rehabilitative therapy. Rehabilitation gloves are tools used both to facilitate rehabilitation and to control improvements by an evaluation system.

View Article and Find Full Text PDF

Texture analysis is the process of highlighting key characteristics thus providing an exhaustive and unambiguous mathematical description of any object represented in a digital image. Each characteristic is connected to a specific property of the object. In some cases the mentioned properties represent aspects visually perceptible which can be detected by developing operators based on Computer Vision techniques.

View Article and Find Full Text PDF

Rehabilitation is often required after stroke, surgery, or degenerative diseases. It has to be specific for each patient and can be easily calibrated if assisted by human-computer interfaces and virtual reality. Recognition and tracking of different human body landmarks represent the basic features for the design of the next generation of human-computer interfaces.

View Article and Find Full Text PDF