Publications by authors named "Danilo A P Nagem"

(1) Background: With the increasing digitalization of healthcare systems, data security and privacy have become crucial issues. In parallel, blockchain technology has gradually proven to be an innovative solution to address this challenge, as its ability to provide an immutable and secure record of transactions offers significant promise for healthcare information management. This systematic review aims to explore the applications of blockchain in health information systems, highlighting its advantages and challenges.

View Article and Find Full Text PDF

Biomechanical analysis of human movement plays an essential role in understanding functional changes in people with Amyotrophic Lateral Sclerosis (ALS), providing information on muscle impairment. Studies suggest that surface electromyography (sEMG) may be able to quantify muscle activity, identify levels of fatigue, assess muscle strength, and monitor variation in limb movement. In this article, a systematic review protocol will analyze the psychometric properties of the sEMG regarding the clinical data on the skeletal muscles of people with ALS.

View Article and Find Full Text PDF

The field of brain-machine interfaces (BMI) for upper limb (UL) orthoses is growing exponentially due to improvements in motor performance, quality of life, and functionality of people with neurological diseases. Considering this, we planned a systematic review to investigate the effects of BMI-controlled UL orthoses for rehabilitation of patients with neurological disorders. This systematic review and meta-analysis protocol was elaborated according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P 2015) and Cochrane Handbook for Systematic Reviews of Interventions.

View Article and Find Full Text PDF

Adaptive algorithms for controlling orthosis emerged to overcome significant problems with automatic biosignal classification and personalized rehabilitation. Smart orthoses are evolving fast and need a better human-machine interaction performance since biosignals, feedback, and motor control dynamically change and must be adaptive. This manuscript outlines a scoping review protocol to systematically review the smart upper limb (UL) orthoses based on adaptive algorithms and feasibility tests.

View Article and Find Full Text PDF

Background: Quantifying the chest wall is useful in documenting thoracoabdominal synchrony during the neonatal period. Subjective measures are often used rather than gold-standard methods due to their practicality in clinical practice. The aim of the present study is to compare the reliability between a newly proposed method (video analysis in MATLAB) and image analysis using AutoCad tools, both applied to assess thoracoabdominal motion in newborns (NBs).

View Article and Find Full Text PDF
Article Synopsis
  • Powered orthosis uses mechanical or electromechanical actuators to assist movement in lower limb joints like the hip, knee, or ankle.
  • Pneumatic artificial muscle (PAM) is considered a suitable actuator due to its muscle-like performance, but traditional EMG signal methods are inadequate for patients with poor signal quality due to neurological conditions.
  • The study focuses on creating a hip orthosis powered by PAMs, utilizing a control system based on hip joint movement, which was successfully tested in a pilot study with a patient affected by poliovirus.
View Article and Find Full Text PDF