Publications by authors named "Danila Branca"

Article Synopsis
  • MK-0616 is a newly developed oral PCSK9 inhibitor that raises hope for an alternative to injectable treatments, following nearly 20 years of research without an effective oral option.* -
  • Using advanced mRNA display screening and structured drug design, MK-0616 was shown to effectively lower PCSK9 levels and significantly reduce LDL cholesterol in clinical trials.* -
  • The trials indicated that MK-0616 has a strong affinity for PCSK9 and demonstrated promising safety and efficacy, suggesting it could be a game changer in cholesterol management.*
View Article and Find Full Text PDF

Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. Starting from second-generation lead structures such as , we were able to refine these structures to obtain extremely potent bi- and tricyclic PCSK9 inhibitor peptides. Optimized molecules such as demonstrated sufficient oral bioavailability to maintain therapeutic levels in rats and cynomolgus monkeys after dosing with an enabled formulation.

View Article and Find Full Text PDF

Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. In this paper, we describe a series of novel cyclic peptides derived from an mRNA display screen which inhibit the protein-protein interaction between PCSK9 and LDLR. Using a structure-based drug design approach, we were able to modify our original screening lead to optimize the potency and metabolic stability and minimize the molecular weight to provide novel bicyclic next-generation PCSK9 inhibitor peptides such as .

View Article and Find Full Text PDF

Smoothened (Smo) antagonists are emerging as new therapies for the treatment of neoplasias with aberrantly reactivated hedgehog (Hh) signaling pathway. A novel series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as smoothened antagonists was recently described, herein the series has been further optimized through the incorporation of a basic amine into the urea. This development resulted in identification of some exceptionally potent smoothened antagonists with low serum shifts, however, reductive ring opening on the 1,2,4-oxadiazole in rats limits the applicability of these compounds in in vivo studies.

View Article and Find Full Text PDF

Herein we describe the discovery of a novel series of pyrrolo[1,2-a]pyrazin-1(2H)-one PARP inhibitors. Optimization led to compounds that display excellent PARP-1 enzyme potency and inhibit the proliferation of BRCA deficient cells in the low double-digit nanomolar range showing excellent selectivity over BRCA proficient cancer cells.

View Article and Find Full Text PDF

We describe an extensive SAR study in the 6-[4-fluoro-3-(substituted)benzyl]-4,5-dimethylpyridazin-3(2H)-one series which led to the identification of potent PARP-1 inhibitors, capable of inhibiting the proliferation of BRCA-1 deficient cancer cells in the low nanomolar range, and displaying >100-fold selectivity over the BRCA wild type counterparts. The series of compounds was devoid of hERG channel activity, and CYP inhibition and induction liabilities. Several analogs were stable in rat and human liver microsomes and displayed moderate rat clearance, with urinary excretion of parent as the major route of elimination.

View Article and Find Full Text PDF

PARP inhibitors have been demonstrated to retard intracellular DNA repair and therefore sensitize tumor cells to cytotoxic agents or ionizing radiation. We report the identification of a novel class of PARP1 inhibitors, containing a pyrrolo moiety fused to a dihydroisoquinolinone, derived from virtual screening of the proprietary collection. SAR exploration around the nitrogen of the aminoethyl appendage chain of 1 led to compounds that displayed low nanomolar activity in a PARP1 enzymatic assay.

View Article and Find Full Text PDF

A novel series of pyrazolo[1,5-a]quinazolin-5(4H)-one derivatives proved to be a potent class of PARP-1 inhibitors. An extensive SAR around the 3-position of pyrazole in the scaffold led to the discovery of amides derivatives as low nanomolar PARP-1 inhibitors.

View Article and Find Full Text PDF

We report the synthesis and biological evaluation of N-[(1-aryl-1H-indazol-5-yl)methyl]amide derivatives as Smoothened antagonists and inhibitors of the Hedgehog pathway. Identification of the lead structure 1 by HTS, followed by SAR study on the amide and aryl portions led to the discovery of antagonists with nanomolar activity.

View Article and Find Full Text PDF

Trifluoroacetylthiophene carboxamides have recently been reported to be class II HDAC inhibitors, with moderate selectivity. Exploration of replacements for the carboxamide with bioisosteric pentatomic heteroaromatic like 1,3,4-oxadiazoles, 1,2,4-oxadiazoles and 1,3-thiazoles, led to the discovery that 2-trifluoroacetylthiophene 1,3,4-oxadiazole derivatives are very potent low nanomolar HDAC4 inhibitors, highly selective over class I HDACs (HDAC 1 and 3), and moderately stable in HCT116 cell culture.

View Article and Find Full Text PDF