SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12.
View Article and Find Full Text PDFThe bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.
View Article and Find Full Text PDFRibosomal RNA (rRNA) is most highly expressed in rapidly growing bacteria and is drastically downregulated under stress conditions by the global transcriptional regulator DksA and the alarmone ppGpp. Here, we determined cryo-electron microscopy structures of the Escherichia coli RNA polymerase (RNAP) σ holoenzyme during rRNA promoter recognition with and without DksA/ppGpp. RNAP contacts the UP element using dimerized α subunit carboxyl-terminal domains and scrunches the template DNA with the σ finger and β' lid to select the transcription start site favorable for rapid promoter escape.
View Article and Find Full Text PDFIn bacteria, rapid adaptation to changing environmental conditions depends on the interplay between housekeeping and alternative σ factors, responsible for transcription of specific regulons by RNA polymerase (RNAP). In comparison with alternative σ factors, primary σs contain poorly conserved region 1.1, whose functions in transcription are only partially understood.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2019
DNA lesions can severely compromise genome stability and lead to cell death if unrepaired. RNA polymerase (RNAP) is known to serve as a sensor of DNA damage and to attract DNA repair factors to the damaged template sites. Here, we systematically investigated the ability of Escherichia coli RNAP to transcribe DNA templates containing various types of DNA lesions, and analyzed their effects on transcription fidelity.
View Article and Find Full Text PDFBacterial RNA polymerase (RNAP) serves as a primase during replication of single-stranded plasmids and filamentous phages. Primer RNA (prRNA) synthesis from the origin regions of these replicons depends on the σ factor that normally participates in promoter recognition. However, it was proposed that σ may not be required for origin recognition but is rather involved in RNA extension by RNAP.
View Article and Find Full Text PDFThe σ factor drives promoter recognition by bacterial RNA polymerase (RNAP) and is also essential for later steps of transcription initiation, including RNA priming and promoter escape. Conserved region 3.2 of the primary σ factor ('σ finger') directly contacts the template DNA strand in the open promoter complex and facilitates initiating NTP binding in the active center of RNAP.
View Article and Find Full Text PDFIn bacterial RNA polymerase (RNAP), conserved region 3.2 of the σ subunit was proposed to contribute to promoter escape by interacting with the 5'-end of nascent RNA, thus facilitating σ dissociation. RNAP activity during transcription initiation can also be modulated by protein factors that bind within the secondary channel and reach the enzyme active site.
View Article and Find Full Text PDFTranscription factors of the Gre family bind within the secondary channel of bacterial RNA polymerase (RNAP) directly modulating its catalytic activities. Universally conserved Gre factors activate RNA cleavage by RNAP, by chelating catalytic metal ions in the RNAP active site, and facilitate both promoter escape and transcription elongation. Gfh factors are Deinococcus/Thermus-specific homologues of Gre factors whose transcription functions remain poorly understood.
View Article and Find Full Text PDFRNA cleavage by bacterial RNA polymerase (RNAP) has been implicated in transcriptional proofreading and reactivation of arrested transcription elongation complexes but its molecular mechanism is less understood than the mechanism of nucleotide addition, despite both reactions taking place in the same active site. RNAP from the radioresistant bacterium Deinococcus radiodurans is characterized by highly efficient intrinsic RNA cleavage in comparison with Escherichia coli RNAP. We find that the enhanced RNA cleavage activity largely derives from amino acid substitutions in the trigger loop (TL), a mobile element of the active site involved in various RNAP activities.
View Article and Find Full Text PDFDuring transcription, the catalytic core of RNA polymerase (RNAP) must interact with the DNA template with low-sequence specificity to ensure efficient enzyme translocation and RNA extension. Unexpectedly, recent structural studies of bacterial promoter complexes revealed specific interactions between the nontemplate DNA strand at the downstream edge of the transcription bubble (CRE, core recognition element) and a protein pocket formed by core RNAP (CRE pocket). We investigated the roles of these interactions in transcription by analyzing point amino acid substitutions and deletions in Escherichia coli RNAP.
View Article and Find Full Text PDFMethods Mol Biol
October 2015
Bacterial RNA polymerase (RNAP) is the main regulatory hub of gene transcription. During transcription, RNAP interacts with the DNA template, RNA product, nucleotide substrates, metal cofactors, and regulatory molecules that bind to distinct RNAP sites to modulate its activity. RNAP is also inhibited by several known antibiotics and is a promising target for development of novel antibacterial compounds.
View Article and Find Full Text PDFThe bacterial RNA polymerase (RNAP) holoenzyme containing σ factor initiates transcription at specific promoter sites by de novo RNA priming, the first step of RNA synthesis where RNAP accepts two initiating ribonucleoside triphosphates (iNTPs) and performs the first phosphodiester bond formation. We present the structure of de novo transcription initiation complex that reveals unique contacts of the iNTPs bound at the transcription start site with the template DNA and also with RNAP and demonstrate the importance of these contacts for transcription initiation. To get further insight into the mechanism of RNA priming, we determined the structure of initially transcribing complex of RNAP holoenzyme with 6-mer RNA, obtained by in crystallo transcription approach.
View Article and Find Full Text PDFThe σ subunit of bacterial RNA polymerase (RNAP) has been implicated in all steps of transcription initiation, including promoter recognition and opening, priming of RNA synthesis, abortive initiation and promoter escape. The post-promoter-recognition σ functions were proposed to depend on its conserved region σ3.2 that directly contacts promoter DNA immediately upstream of the RNAP active centre and occupies the RNA exit path.
View Article and Find Full Text PDFBesides canonical double-strand DNA promoters, multisubunit RNAPs (RNA polymerases) recognize a number of specific single-strand DNA and RNA templates, resulting in synthesis of various types of RNA transcripts. The general recognition principles and the mechanisms of transcription initiation on these templates are not fully understood. To investigate further the molecular mechanisms underlying the transcription of single-strand templates by bacterial RNAP, we selected high-affinity single-strand DNA aptamers that are specifically bound by RNAP holoenzyme, and characterized a novel class of aptamer-based transcription templates.
View Article and Find Full Text PDFRNA polymerase (RNAP) from thermophilic Thermus aquaticus is characterized by higher temperature of promoter opening, lower promoter complex stability, and higher promoter escape efficiency than RNAP from mesophilic Escherichia coli. We demonstrate that these differences are in part explained by differences in the structures of the N-terminal regions 1.1 and 1.
View Article and Find Full Text PDFInteractions of RNA polymerase (RNAP) with nucleic acids must be tightly controlled to ensure precise and processive RNA synthesis. The RNAP β'-subunit Switch-2 (SW2) region is part of a protein network that connects the clamp domain with the RNAP body and mediates opening and closing of the active center cleft. SW2 interacts with the template DNA near the RNAP active center and is a target for antibiotics that block DNA melting during initiation.
View Article and Find Full Text PDF