Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies.
View Article and Find Full Text PDFThe rational design and selection of formulation composition to meet molecule-specific and product-specific needs are critical for biotherapeutics development to ensure physical and chemical stability. This work, based on three antibody-based (mAb) proteins (mAbA, mAbB, and mAbC), evaluates residue-specific impact of EDTA and methionine on protein oxidation, using an integrated biotherapeutics drug product development workflow. This workflow includes statistical experimental design, high-throughput experimental automation and execution, structure-based in silico modeling, inferential statistical analysis, and enhanced interactive data visualization of large datasets.
View Article and Find Full Text PDFMany efforts have been made to achieve targeted delivery of anticancer drugs to enhance their efficacy and to reduce their adverse effects. These efforts include the development of nanomedicines as they can selectively penetrate through tumor blood vessels through the enhanced permeability and retention (EPR) effect. The EPR effect was first proposed by Maeda and co-workers in 1986, and since then various types of nanoparticles have been developed to take advantage of the phenomenon with regards to drug delivery.
View Article and Find Full Text PDFApomorphine, a dopamine agonist, is a highly effective therapeutic to prevent intermittent off episodes in advanced Parkinson's disease. However, its short systemic half-life necessitates three injections per day. Such a frequent dosing regimen imposes a significant compliance challenge, especially given the nature of the disease.
View Article and Find Full Text PDFThe mucus barrier lining the gastrointestinal tract poses a significant barrier to the oral delivery of macromolecular drugs. Successful approaches to overcoming this barrier have primarily focused on reducing drug and carrier interactions with mucus or disrupting the mucus layer directly. Choline-based ionic liquids (ILs) such as choline geranate and choline glycolate (CGLY) have recently been shown to be effective in enhancing the intestinal absorption of macromolecules such as insulin and immunoglobulin (IgG), respectively.
View Article and Find Full Text PDFDeveloping ultra-high concentration biotherapeutics drug products can be challenging due to increased viscosity, processing, and stability issues. Excipients used to alleviate these concerns are traditionally evaluated at lower protein concentrations. This study investigates whether classically known modulators of stability and viscosity at low (<50 mg/mL) to high (>50 - 150 mg/mL) protein concentrations are beneficial in ultra-high (>150 mg/mL) concentration protein formulations and drug products.
View Article and Find Full Text PDFFormulation of protein-based therapeutics employ advanced formulation and analytical technologies for screening various parameters such as buffer, pH, and excipients. At a molecular level, physico-chemical properties of a protein formulation depend on self-interaction between protein molecules, protein-solvent and protein-excipient interactions. This work describes a novel in silico approach, SILCS-Biologics, for structure-based modeling of protein formulations.
View Article and Find Full Text PDFThe extent of inter- and intra-tumor cell heterogeneity observed in patient tumors appears to be directly associated with patient prognosis. Moreover, studies indicate that targeting distinct subpopulations of tumor cells may be more relevant to successfully managing cancer metastasis. The ability to distinguish and characterize unique tumor cell subpopulations within a given sample is thus exigent.
View Article and Find Full Text PDFin managing cancer metastasis is significant. However, low CTC isolation purities from patient blood have hindered sensitive molecular assays of these rare cells. Described herein is the ultra-pure isolation of CTCs from patient blood samples and how this platform has enabled highly specific molecular (mRNA and miRNA) profiling of patient CTCs.
View Article and Find Full Text PDF