Publications by authors named "Daniil Shanshin"

Antibodies are complex protein structures, and producing them using eukaryotic expression systems presents significant challenges. One frequently overlooked aspect of expression vectors is the nucleotide sequence encoding the signal peptide, which plays a pivotal role in facilitating the secretion of recombinant proteins. This study presents the development of an integrative vector, pVEAL3, for expressing full-length recombinant monoclonal antibodies in mammalian cells.

View Article and Find Full Text PDF

The annual number of reported human cases of flavivirus infections continues to increase. Measures taken by local healthcare systems and international organizations are not fully successful. In this regard, new approaches to treatment and prevention of flavivirus infections are relevant.

View Article and Find Full Text PDF

Antibodies are protein molecules whose primary function is to recognize antigens. However, recent studies have demonstrated their ability to hydrolyze specific substrates, such as proteins, oligopeptides, and nucleic acids. In 2023, two separate teams of researchers demonstrated the proteolytic activity of natural plasma antibodies from COVID-19 convalescents.

View Article and Find Full Text PDF

In December 2019, a new coronavirus, SARS-CoV-2, was found to in Wuhan, China. Cases of infection were subsequently detected in other countries in a short period of time, resulting in the declaration of the COVID-19 pandemic by the World Health Organization (WHO) on 11 March 2020. Questions about the impact of herd immunity of pre-existing immune reactivity to SARS-CoV-2 on COVID-19 severity, associated with the immunity to seasonal manifestation, are still to be resolved and may be useful for understanding some processes that precede the emergence of a pandemic virus.

View Article and Find Full Text PDF

Despite the long history of use and the knowledge of the genetics and biochemistry of , problems are still possible in obtaining a soluble form of recombinant proteins in this system. Although, soluble protein can be obtained both in the cytoplasm and in the periplasm of the bacterial cell. The latter is a priority strategy for obtaining soluble proteins.

View Article and Find Full Text PDF

Identification of factors behind the level and duration of persistence of the SARS-CoV-2 antibodies in the blood is assumed to set the direction for studying humoral immunity mechanisms against COVID-19, optimizing the strategy for vaccine use, antibody-based drugs, and epidemiological control of COVID-19. Objective: This study aimed to study the relationship between clinical and demographic characteristics and the level of IgG antibodies to the RBD of SARS-CoV-2 spike protein after COVID-19 in the long term. Residents of the Altai Region of Western Siberia of Russia, Caucasians, aged from 27 to 93 years (median 53.

View Article and Find Full Text PDF

Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses.

View Article and Find Full Text PDF

Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments.

View Article and Find Full Text PDF

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface.

View Article and Find Full Text PDF

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model.

View Article and Find Full Text PDF

For the first time, derivatives of 3,7-diazabicyclo[3.3.1]nonane (bispidine) were proposed as potential inhibitors of the SARS-CoV-2 main viral protease (3-chymotrypsin-like, 3CLpro).

View Article and Find Full Text PDF

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design.

View Article and Find Full Text PDF

The COVID-19 pandemic, which began at the end of 2019 in Wuhan, has affected 220 countries and territories to date. In the present study, we studied humoral immunity in samples of the blood sera of COVID-19 convalescents of varying severity and patients who died due to this infection, using native SARS-CoV-2 and its individual recombinant proteins. The cross-reactivity with SARS-CoV (2002) was also assessed.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics.

View Article and Find Full Text PDF