Growth of lithium whiskers or dendrites is the major obstacle towards safe and stable utilization of lithium metal anodes in rechargeable batteries. In this study, we look deeper into the mechanism of lithium electrodeposition. We find that before lithium whisker or dendrite nucleation occurs, lithium is deposited into the grain boundaries of the metal electrode, which we directly observed in the focused ion beam cross-sections of the lithium electrode.
View Article and Find Full Text PDFThe search for new environmental-friendly materials for energy storage is ongoing. In the presented paper, we propose polymer microgels as a new class of redox-active colloids (RACs). The microgel stable colloids are perspective low-viscosity fluids for advanced flow batteries with high volumetric energy density.
View Article and Find Full Text PDFLithium plating-one of the critical processes in the desired high-energy lithium metal batteries-is accompanied by lithium whisker growth, which causes several problems that prevent the employment of metallic lithium anodes in rechargeable systems. They include low coulombic efficiency, electrolyte consumption, and the risk of short circuits, which can lead to thermal runaway of the battery. In recent years several strategies were suggested to mitigate whisker growth.
View Article and Find Full Text PDFThe metallic lithium electrode has major concerns such as extremely high reactivity and nonuniform needle-like electrodeposition, limiting its wide application as a negative electrode in secondary batteries. Its reactions with the electrolyte leading to solid electrolyte interphase (SEI) formation play an important role, and controlling its composition and properties can help to overcome both difficulties. Even though solid electrolyte interphase chemistry and properties seem to be well known, many surface chemistry experiments reported are not perfect with respect to the purity needed for Li studies and can be interpreted alternatively.
View Article and Find Full Text PDFThe development of high specific energy Li-O batteries faces a problem of poor cycling as a result of passivation of the positive electrode by both the discharge product (LiO) and side products (LiCO, etc.). The latter are the result of oxidation of the electrode materials or electrolyte components primarily by discharge intermediate superoxide anions (O) and, in less degree, by LiO.
View Article and Find Full Text PDFSolid electrolytes are of high interest for the development of advanced electrochemical energy storage devices with all-solid-state architectures. Here, we report the fabrication of the electrolyte membranes based on LiTFSI (LiN(CFSO)) and PEO-PVDF blends with improved properties. We show that addition of PVDF enables preparation of free-standing films of the compositions within the so called "crystallinity gap" of the LiTFSI-PEO system known to provide high ion conductivity.
View Article and Find Full Text PDFThe development of high-energy lithium-oxygen batteries has significantly slowed by numerous challenges including capacity limitations due to electrode surface passivation by the discharge product LiO. Since the passivation rate and intensity are dependent on the deposit morphology, herein, we focus on the mechanisms governing LiO formation within the porous cathode. We report evidence of homogeneous nucleation of LiO crystallites and their further assembly in bulk of the electrolyte solution in DMSO, which possesses a high donor number.
View Article and Find Full Text PDFMany obstacles impede the development of Li-air batteries for practical applications. In particular, there is lack of understanding of the dynamics of processes occurring in porous air electrodes during discharge, including oxygen transport limitations, pore clogging and electrode passivation by both insulating discharge and parasitic reaction products. Here, using small-angle neutron scattering, which provides information on the whole electrode adequate to electrochemical data, we uncover the mechanisms limiting the Li-O2 porous carbon electrode capacity by analysis of the cathode pore filling in highly and poorly solvating media - dimethyl sulfoxide and acetonitrile.
View Article and Find Full Text PDFFundamental understanding of growth mechanisms of Li2O2 in Li-O2 cells is critical for implementing batteries with high gravimetric energies. Li2O2 growth can occur first by 1e(-) transfer to O2, forming Li(+)-O2(-) and then either chemical disproportionation of Li(+)-O2(-), or a second electron transfer to Li(+)-O2(-). We demonstrate that Li2O2 growth is governed primarily by disproportionation of Li(+)-O2(-) at low overpotential, and surface-mediated electron transfer at high overpotential.
View Article and Find Full Text PDFUnderstanding and controlling the kinetics of O2 reduction in the presence of Li(+)-containing aprotic solvents, to either Li(+)-O2(-) by one-electron reduction or Li2 O2 by two-electron reduction, is instrumental to enhance the discharge voltage and capacity of aprotic Li-O2 batteries. Standard potentials of O2 /Li(+)-O2(-) and O2/O2(-) were experimentally measured and computed using a mixed cluster-continuum model of ion solvation. Increasing combined solvation of Li(+) and O2(-) was found to lower the coupling of Li(+)-O2(-) and the difference between O2/Li(+)-O2(-) and O2/O2(-) potentials.
View Article and Find Full Text PDFOxygen reduction reaction (ORR) plays a key role in lithium-air batteries (LABs) that attract great attention thanks to their high theoretical specific energy several times exceeding that of lithium-ion batteries. Because of their high surface area, high electric conductivity, and low specific weight, various carbons are often materials of choice for applications as the LAB cathode. Unfortunately, the possibility of practical application of such batteries is still under question as the sustainable operation of LABs with carbon cathodes is not demonstrated yet and the cyclability is quite poor, which is usually associated with oxygen reduced species side reactions.
View Article and Find Full Text PDFIn this paper we propose a new and simple method to tune the carbon nanowall microstructure by sharp variation of CH4/H2 plasma conditions. Using theoretical calculations we demonstrated that the sharp variation of gas pressure and discharge current leads to significant variation of plasma radical composition. In some cases such perturbation creates the necessary conditions for the nucleation of smaller secondary nanowalls on the surface of primary ones.
View Article and Find Full Text PDFThe often observed and still unexplained phenomenon of the growth of lithium peroxide crystal clusters during the discharge of Li-O2 cells is likely to happen because of self-assembling Li2O2 platelets that nucleate homogeneously right after the intermediate formation of superoxide ions by a single-electron oxygen reduction reaction (ORR). This feature limits the rechargeability of Li-O2 cells, but at the same time it can be beneficial for both capacity improvement and gain in recharge rate if a proper liquid phase mediator can be found.
View Article and Find Full Text PDFUnfortunately, the practical applications of Li-O2 batteries are impeded by poor rechargeability. Here, for the first time we show that superoxide radicals generated at the cathode during discharge react with carbon that contains activated double bonds or aromatics to form epoxy groups and carbonates, which limits the rechargeability of Li-O2 cells. Carbon materials with a low amount of functional groups and defects demonstrate better stability thus keeping the carbon will-o'-the-wisp lit for lithium-air batteries.
View Article and Find Full Text PDF