Publications by authors named "Daniil Bratashov"

Levan-type polysaccharides, produced by various organisms, are nontoxic, biocompatible, and biodegradable polymers with a wide range of biological activities. They have high potential for use in medicine, cosmetology, and industry. A large amount of levan (41.

View Article and Find Full Text PDF

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism.

View Article and Find Full Text PDF

Macromolecules and their complexes remain interesting topics in various fields, such as targeted drug delivery and tissue regeneration. The complex chemical structure of such substances can be studied with a combination of Raman spectroscopy and machine learning. The complex of whey protein isolate (WPI) and hyaluronic acid (HA) is beneficial in terms of drug delivery.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a well-established cancer treatment method that employs light to generate reactive oxygen species (ROS) causing oxidative damage to cancer cells. Nevertheless, PDT encounters challenges due to its oxygen-dependent nature, which makes it less effective in hypoxic tumor environments. To address this issue, we have developed a novel nanocomposite known as AuNC@BBR@Ghost.

View Article and Find Full Text PDF

Photoacoustic flow cytometry is one of the most effective approaches to detect "alien" objects in the bloodstream, including circulating tumor cells, blood clots, parasites, and emboli. However, the possibility of detecting high-amplitude signals from these objects against the background of blood depends on the parameters of the laser pulse. So, the dependencies of photoacoustic signals amplitude and number on laser pulse energy (5-150 μJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5, 10 kHz) for the melanoma cells were investigated.

View Article and Find Full Text PDF

Hematomas resulted from trauma are very common, and the efficacy of existing treatment techniques is limited. Phototherapy can be used to expedite healing and improve the appearance of the damaged tissue. Efficient phototherapy requires determination of chromophore composition in hematoma, which can be provided by the optoacoustic (OA) technique, as it combines high spatial resolution and optical contrast.

View Article and Find Full Text PDF

The possibility of using magnetically labeled blood cells as carriers is a novel approach in targeted drug-delivery systems, potentially allowing for improved bloodstream delivery strategies. Blood cells already meet the requirements of biocompatibility, safety from clotting and blockage of small vessels. It would solve the important problem of the patient's immune response to embedded foreign carriers.

View Article and Find Full Text PDF

A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects' capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance.

View Article and Find Full Text PDF

We present a targeted drug delivery system for therapy and diagnostics that is based on a combination of contrasting, cytotoxic, and cancer-cell-targeting properties of multifunctional carriers. The system uses multilayered polymer microcapsules loaded with magnetite and doxorubicin. Loading of magnetite nanoparticles into the polymer shell by freezing-induced loading (FIL) allowed the loading efficiency to be increased 5-fold, compared with the widely used layer-by-layer (LBL) assembly.

View Article and Find Full Text PDF

Bacterial infections are a severe medical problem, especially in traumatology, orthopedics, and surgery. The local use of antibiotics-elution materials has made it possible to increase the effectiveness of acute infections treatment. However, the infection prevention problem remains unresolved.

View Article and Find Full Text PDF

Drug carriers based on polyelectrolyte microcapsules remotely controlled with an external magnetic field are a promising drug delivery system. However, the influence of capsule parameters on microcapsules' behavior in vivo is still ambiguous and requires additional study. Here, we discuss how the processes occurring in the blood flow influence the circulation time of magnetic polyelectrolyte microcapsules in mouse blood after injection into the blood circulatory system and their interaction with different blood components, such as WBCs and RBCs.

View Article and Find Full Text PDF

In modern digital microscopy, deconvolution methods are widely used to eliminate a number of image defects and increase resolution. In this review, we have divided these methods into classical, deep learning-based, and optimization-based methods. The review describes the major architectures of neural networks, such as convolutional and generative adversarial networks, autoencoders, various forms of recurrent networks, and the attention mechanism used for the deconvolution problem.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) has proven to be a promising technique for different types of imaging including preoperative and intraoperative in vivo tumor visualization. However, the strong scattering of the turbid tissue limits its use in subcutaneous areas. In this article, we used an optical clearing technique to improve the SERS signal from a subcutaneous tumor phantom.

View Article and Find Full Text PDF

A new type of flat substrate has been used to visualize structures inside living cells by surface-enhanced Raman scattering (SERS) and to study biochemical processes within cells. The SERS substrate is formed by stabilized aggregates of gold nanostars on a glass microscope slide coated with a layer of poly (4-vinyl pyridine) polymer. This type of SERS substrate provides good cell adhesion and viability.

View Article and Find Full Text PDF

Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing.

View Article and Find Full Text PDF

There has been growing interest in recent years in developing multifunctional materials for studying the structure interface in biological systems. In this regard, the multimodal systems, which possess activity in the near-infrared (NIR) region, become even more critical for the possibility of improving examined biotissue depth and, eventually, data analysis. Herein, we engineered bi-modal contrast agents by integrating carbon nanotubes (CNT) and gold nanoparticles (AuNP) around silica microspheres using the Layer-by-Layer self-assembly method.

View Article and Find Full Text PDF

Polyelectrolyte microcapsules and other targeted drug delivery systems could substantially reduce the side effects of drug and overall toxicity. At the same time, the cardiovascular system is a unique transport avenue that can deliver drug carriers to any tissue and organ. However, one of the most important potential problems of drug carrier systemic administration in clinical practice is that the carriers might cause circulatory disorders, the development of pulmonary embolism, ischemia, and tissue necrosis due to the blockage of small capillaries.

View Article and Find Full Text PDF

In vivo liquid biopsy, especially using the photoacoustic (PA) method, demonstrated high clinical potential for early diagnosis of deadly diseases such as cancer, infections, and cardiovascular disorders through the detection of rare circulating tumor cells (CTCs), bacteria, and clots in the blood background. However, little progress has been made in terms of standardization of these techniques, which is crucial to validate their high sensitivity, accuracy, and reproducibility. In the present study, we addressed this important demand by introducing a dynamic blood vessel phantom with flowing mimic normal and abnormal cells.

View Article and Find Full Text PDF

Targeting drug delivery systems is crucial to reducing the side effects of therapy. However, many of them are lacking effectiveness for kidney targeting, due to systemic dispersion and accumulation in the lungs and liver after intravenous administration. Renal artery administration of carriers provides their effective local accumulation but may cause irreversible vessel blockage.

View Article and Find Full Text PDF

Label-free characterization of cell subpopulations is a very promising biomedical approach. Nowadays, there are several label-free methods based on different physical properties such as size, density, stiffness, etc. allowing the characterization of biological objects.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is widely used for and bioimaging applications. However, reproducible and controllable fabrication of SERS tags with high density of electromagnetic hot-spots is still challenging. We report an improved strategy for the synthesis of core/shell Raman tags with high density of hot-spots and high immobilization of reporter molecules.

View Article and Find Full Text PDF

Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections.

View Article and Find Full Text PDF

Toxicity of reduced graphene oxide (rGO) has been a topic of multiple studies and was shown to depend on a variety of characteristics of rGO and biological objects of interest. In this paper, we demonstrate that when studying the same dispersions of rGO and fluorescent () bacteria, the outcome of nanotoxicity experiments also depends on the type of culture medium. We show that rGO inhibits the growth of bacteria in a nutrition medium but shows little effect on the behavior of in a physiological saline solution.

View Article and Find Full Text PDF