Composites comprising vanadium-pentoxide (VO) and single-walled carbon nanotubes (SWCNTs) are promising components for emerging applications in optoelectronics, solar cells, chemical and electrochemical sensors, . We propose a novel, simple, and facile approach for SWCNT covering with VO by spin coating under ambient conditions. With the hydrolysis-polycondensation of the precursor (vanadyl triisopropoxide) directly on the surface of SWCNTs, the nm-thick layer of oxide is amorphous with a work function of 4.
View Article and Find Full Text PDFElectrically conductive thin-film materials possessing high transparency are essential components for many optoelectronic devices. The advancement in the transparent conductor applications requires a replacement of indium tin oxide (ITO), one of the key materials in electronics. ITO and other transparent conductive metal oxides have several drawbacks, including poor flexibility, high refractive index and haze, limited chemical stability, and depleted raw material supply.
View Article and Find Full Text PDFHere, for the first time, we investigated the effects of matrixes with different nature on the stimuli-responsive mechanoluminescence (ML) of incorporated nanoparticles. It turned out that the contraction forces initiated by polymerization process can have compressive effects that differ by orders. This effect was achieved owing to the introduction of ML crystals in an alumina sol-gel system, which has large surface of coagulation contact.
View Article and Find Full Text PDFA major obstacle in developing upconversion aerogels is the incompatibility of the highly-developed porosity and the crystal structure required for converting light to a shorter wavelength. We propose a novel method for creating a sol-gel procedure for synthesizing metal (Zr, Hf, and Ta) oxide upconverison aerogels uniformly doped with Er3+ and Yb3+ by precisely adjusting the calcination conditions.
View Article and Find Full Text PDFSol-gel monoliths based on SiO, TiO and ZrO with holographic colourful diffraction on their surfaces were obtained via a sol-gel synthesis and soft lithography combined method. The production was carried out without any additional equipment at near room temperature and atmospheric pressure. The accurately replicated wavy structure with nanoscale size of material particles yields holographic effect and its visibility strongly depends on refractive index (RI) of materials.
View Article and Find Full Text PDF